14 research outputs found

    Agnostic Active Learning Without Constraints

    Full text link
    We present and analyze an agnostic active learning algorithm that works without keeping a version space. This is unlike all previous approaches where a restricted set of candidate hypotheses is maintained throughout learning, and only hypotheses from this set are ever returned. By avoiding this version space approach, our algorithm sheds the computational burden and brittleness associated with maintaining version spaces, yet still allows for substantial improvements over supervised learning for classification

    Multi-View Active Learning in the Non-Realizable Case

    Full text link
    The sample complexity of active learning under the realizability assumption has been well-studied. The realizability assumption, however, rarely holds in practice. In this paper, we theoretically characterize the sample complexity of active learning in the non-realizable case under multi-view setting. We prove that, with unbounded Tsybakov noise, the sample complexity of multi-view active learning can be O~(log1ϵ)\widetilde{O}(\log\frac{1}{\epsilon}), contrasting to single-view setting where the polynomial improvement is the best possible achievement. We also prove that in general multi-view setting the sample complexity of active learning with unbounded Tsybakov noise is O~(1ϵ)\widetilde{O}(\frac{1}{\epsilon}), where the order of 1/ϵ1/\epsilon is independent of the parameter in Tsybakov noise, contrasting to previous polynomial bounds where the order of 1/ϵ1/\epsilon is related to the parameter in Tsybakov noise.Comment: 22 pages, 1 figur

    An Adaptive Strategy for Active Learning with Smooth Decision Boundary

    Full text link
    We present the first adaptive strategy for active learning in the setting of classification with smooth decision boundary. The problem of adaptivity (to unknown distributional parameters) has remained opened since the seminal work of Castro and Nowak (2007), which first established (active learning) rates for this setting. While some recent advances on this problem establish adaptive rates in the case of univariate data, adaptivity in the more practical setting of multivariate data has so far remained elusive. Combining insights from various recent works, we show that, for the multivariate case, a careful reduction to univariate-adaptive strategies yield near-optimal rates without prior knowledge of distributional parameters

    Adaptivity to Noise Parameters in Nonparametric Active Learning

    Full text link
    This work addresses various open questions in the theory of active learning for nonparametric classification. Our contributions are both statistical and algorithmic: -We establish new minimax-rates for active learning under common \textit{noise conditions}. These rates display interesting transitions -- due to the interaction between noise \textit{smoothness and margin} -- not present in the passive setting. Some such transitions were previously conjectured, but remained unconfirmed. -We present a generic algorithmic strategy for adaptivity to unknown noise smoothness and margin; our strategy achieves optimal rates in many general situations; furthermore, unlike in previous work, we avoid the need for \textit{adaptive confidence sets}, resulting in strictly milder distributional requirements

    Beyond Disagreement-based Agnostic Active Learning

    Full text link
    We study agnostic active learning, where the goal is to learn a classifier in a pre-specified hypothesis class interactively with as few label queries as possible, while making no assumptions on the true function generating the labels. The main algorithms for this problem are {\em{disagreement-based active learning}}, which has a high label requirement, and {\em{margin-based active learning}}, which only applies to fairly restricted settings. A major challenge is to find an algorithm which achieves better label complexity, is consistent in an agnostic setting, and applies to general classification problems. In this paper, we provide such an algorithm. Our solution is based on two novel contributions -- a reduction from consistent active learning to confidence-rated prediction with guaranteed error, and a novel confidence-rated predictor
    corecore