2,060 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Vulnerability of LTE to Hostile Interference

    Full text link
    LTE is well on its way to becoming the primary cellular standard, due to its performance and low cost. Over the next decade we will become dependent on LTE, which is why we must ensure it is secure and available when we need it. Unfortunately, like any wireless technology, disruption through radio jamming is possible. This paper investigates the extent to which LTE is vulnerable to intentional jamming, by analyzing the components of the LTE downlink and uplink signals. The LTE physical layer consists of several physical channels and signals, most of which are vital to the operation of the link. By taking into account the density of these physical channels and signals with respect to the entire frame, as well as the modulation and coding schemes involved, we come up with a series of vulnerability metrics in the form of jammer to signal ratios. The ``weakest links'' of the LTE signals are then identified, and used to establish the overall vulnerability of LTE to hostile interference.Comment: 4 pages, see below for citation. M. Lichtman, J. Reed, M. Norton, T. Clancy, "Vulnerability of LTE to Hostile Interference'', IEEE Global Conference on Signal and Information Processing (GlobalSIP), Dec 201

    Performance evaluation of channel estimation techniques for MIMO-OFDM systems with adaptive sub-carrier allocation

    Get PDF
    • …
    corecore