227 research outputs found

    Towards Decentralized and Adaptive Network Resource Management

    Get PDF
    Abstract—Current practices for managing resources in fixed networks rely on off-line approaches, which can be sub-optimal in the face of changing or unpredicted traffic demand. To cope with the limitations of these off-line configurations new traffic engineering (TE) schemes that can adapt to network and traffic dynamics are required. In this paper, we propose an intradomain dynamic TE system for IP networks. Our approach uses multi-topology routing as the underlying routing protocol to provide path diversity and supports adaptive resource management operations that dynamically adjust the volume of traffic sent across each topology. Re-configuration actions are performed in a coordinated fashion based on an in-network overlay of network entities without relying on a centralized management system. We analyze the performance of our approach using a realistic network topology, and our results show that the proposed scheme can achieve near-optimal network performance in terms of resource utilization in a responsive manner

    A Survey of Network Optimization Techniques for Traffic Engineering

    Get PDF
    TCP/IP represents the reference standard for the implementation of interoperable communication networks. Nevertheless, the layering principle at the basis of interoperability severely limits the performance of data communication networks, thus requiring proper configuration and management in order to provide effective management of traffic flows. This paper presents a brief survey related to network optimization using Traffic Engineering algorithms, aiming at providing additional insight to the different alternatives available in the scientific literature

    A Logically Centralized Approach for Control and Management of Large Computer Networks

    Get PDF
    Management of large enterprise and Internet Service Provider networks is a complex, error-prone, and costly challenge. It is widely accepted that the key contributors to this complexity are the bundling of control and data forwarding in traditional routers and the use of fully distributed protocols for network control. To address these limitations, the networking research community has been pursuing the vision of simplifying the functional role of a router to its primary task of packet forwarding. This enables centralizing network control at a decision plane where network-wide state can be maintained, and network control can be centrally and consistently enforced. However, scalability and fault-tolerance concerns with physical centralization motivate the need for a more flexible and customizable approach. This dissertation is an attempt at bridging the gap between the extremes of distribution and centralization of network control. We present a logically centralized approach for the design of network decision plane that can be realized by using a set of physically distributed controllers in a network. This approach is aimed at giving network designers the ability to customize the level of control and management centralization according to the scalability, fault-tolerance, and responsiveness requirements of their networks. Our thesis is that logical centralization provides a robust, reliable, and efficient paradigm for management of large networks and we present several contributions to prove this thesis. For network planning, we describe techniques for optimizing the placement of network controllers and provide guidance on the physical design of logically centralized networks. For network operation, algorithms for maintaining dynamic associations between the decision plane and network devices are presented, along with a protocol that allows a set of network controllers to coordinate their decisions, and present a unified interface to the managed network devices. Furthermore, we study the trade-offs in decision plane application design and provide guidance on application state and logic distribution. Finally, we present results of extensive numerical and simulative analysis of the feasibility and performance of our approach. The results show that logical centralization can provide better scalability and fault-tolerance while maintaining performance similarity with traditional distributed approach

    Algorithmic Implementation of Load Balancing �in Wireless LAN

    Get PDF
    Intra domain traffic engineering (TE) has become an indispensable tool for Internet Service Providers (ISPs) to optimize network performance and utilize network resources efficiently. Various explicit routing TE methods were recently proposed and have been able to achieve high network performance. However, explicit routing has high complexity and requires Large Ternary Content Addressable Memories (TCAMs) in the routers. Moreover, it is costly to deploy explicit routing in IP networks. In this project, we present an approach, called Generalized Destination-Based Multipath Routing (GDMR), to achieve the high performance as explicit routing. The main contribution of this project is to enhance an arbitrary explicit routing can be converted to a loop-free destination-based routing without any performance penalty for a given traffic matrix. We present a systematic approach including a heuristic algorithm to realize GDMR. Extensive evaluation demonstrates the effectiveness and robustness of GDMR

    Information Exchange rather than Topology Awareness: Cooperation between P2P Overlay and Traffic Engineering

    Get PDF
    Solutions to the routing strategic conflict between noncooperative P2P overlay and ISP underlay go separate ways: hyperselfishness and cooperation. Unpredictable (possibly adverse) impact of the hyperselfish topology awareness, which is adopted in both overlay routing and traffic engineering, has not been sufficiently studied in the literature. Topology-related information exchange in a cooperatively efficient way should be highlighted to alleviate the cross-layer conflict. In this paper, we first illustrate the hyperselfish weakness with two dynamic noncooperative game models in which hyperselfish overlay or underlay has to accept a suboptimal profit. Then we build a synergistic cost-saving (SC) game model to reduce the negative effects of noncooperation. In the SC model, through information exchange, that is, the classified path-delay metrics for P2P overlay and peer locations for underlay, P2P overlay selects proximity as well as saving traffic transit cost for underlay, and ISP underlay adjusts routing to optimize network cost as well as indicating short delay paths for P2P. Simulations based on the real and generated topologies validate cost improvement by SC model and find a proper remote threshold value to limit P2P traffic from remote area, cross-AS, or cross-ISP

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    DACoRM: A Coordinated, Decentralized and Adaptive Network Resource Management Scheme

    Get PDF
    Abstract—In order to meet the requirements of emerging demanding services, network resource management functionality that is decentralized, flexible and adaptive to traffic and network dynamics is of paramount importance. In this paper we describe the main mechanisms of DACoRM, a new intra-domain adaptive resource management approach for IP networks. Based on path diversity provided by multi-topology routing, our approach controls the distribution of traffic load in the network in an adaptive manner through periodical re-configurations that uses real-time monitoring information. The re-configuration actions performed are decided in a coordinated fashion between a set of source nodes that form an in-network overlay. We evaluate the overall performance of our approach using realistic network topologies. Results show that near-optimal network performance in terms of resource utilization can be achieved in scalable manner
    • …
    corecore