105,316 research outputs found

    Human Motion Capture Data Tailored Transform Coding

    Full text link
    Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed

    SOVEREIGN: An Autonomous Neural System for Incrementally Learning Planned Action Sequences to Navigate Towards a Rewarded Goal

    Full text link
    How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.Riverside Reserach Institute; Defense Advanced Research Projects Agency (N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0225); National Science Foundation (IRI 90-24877, SBE-0345378); Office of Naval Research (N00014-92-J-1309, N00014-91-J-4100, N00014-01-1-0624, N00014-01-1-0624); Pacific Sierra Research (PSR 91-6075-2

    How visual confidence on global motion is affected by local motion ambiguity and type of motion noise, and its correlation with autistic trait tendency?

    Full text link
    Perceptual confidence has been found to correlate with task performance in general, and is believed to be independent of stimulus features. However, certain stimulus feature could induce a subjective sense of uncertainty, which could potentially influence confidence judgments beyond task performance. The present studies aimed at assessing the effects of the ambiguity of local motion signals on perceptual confidence on a global-motion task. Participants first discriminated the global motion directions of two multiple-aperture, global-motion patterns, one generated using multiple Gabor elements and the other using multiple Plaid elements. They then performed a two-interval, forced-choice confidence task by choosing which of the two perceptual responses they were more confident in being correct. In Experiment 1, when perceptual performance was controlled by varying coherence, we found that participants chose plaids more often than Gabors, even with perceptual performance matched between the two patterns. In Experiment 2, when perceptual performance was controlled by varying luminance contrast of noisy pixels in every motion frame, such “plaid preference” in confidence bias was significantly weakened. Besides, there has been numerous studies on visual perception of autistic individuals. But not many of them has looked into the relationship between their metacognition and perceptual judgement. This study aimed at assessing the relationship between the autistic trait tendency and metacognitive process about one’s perceptual performance. Our results show that, at the same level of objective task performance, subject perceptual confidence depends on both the ambiguity of local motion signals and the type of noise. Our results also shows that there is an association between the subject perceptual confidence and the autistic trait tendency

    Low-latency compression of mocap data using learned spatial decorrelation transform

    Full text link
    Due to the growing needs of human motion capture (mocap) in movie, video games, sports, etc., it is highly desired to compress mocap data for efficient storage and transmission. This paper presents two efficient frameworks for compressing human mocap data with low latency. The first framework processes the data in a frame-by-frame manner so that it is ideal for mocap data streaming and time critical applications. The second one is clip-based and provides a flexible tradeoff between latency and compression performance. Since mocap data exhibits some unique spatial characteristics, we propose a very effective transform, namely learned orthogonal transform (LOT), for reducing the spatial redundancy. The LOT problem is formulated as minimizing square error regularized by orthogonality and sparsity and solved via alternating iteration. We also adopt a predictive coding and temporal DCT for temporal decorrelation in the frame- and clip-based frameworks, respectively. Experimental results show that the proposed frameworks can produce higher compression performance at lower computational cost and latency than the state-of-the-art methods.Comment: 15 pages, 9 figure
    corecore