1,026,412 research outputs found
Recommended from our members
Anticipated Fiscal Policy and Adaptive Learning
We consider the impact of anticipated policy changes when agents form expectations using adaptive learning rather than rational expectations. To model this we assume that agents combine limited structural knowledge with a standard adaptive learning rule. We analyze these issues using two well-known set-ups, an endowment economy and the Ramsey model. In our set-up there are important deviations from both rational expectations and purely adaptive learning. Our approach could be applied to many macroeconomic frameworks
Asset pricing under rational learning about rare disasters : [Version 28 Juli 2011]
This paper proposes a new approach for modeling investor fear after rare disasters. The key element is to take into account that investors’ information about fundamentals driving rare downward jumps in the dividend process is not perfect. Bayesian learning implies that beliefs about the likelihood of rare disasters drop to a much more pessimistic level once a disaster has occurred. Such a shift in beliefs can trigger massive declines in price-dividend ratios. Pessimistic beliefs persist for some time. Thus, belief dynamics are a source of apparent excess volatility relative to a rational expectations benchmark. Due to the low frequency of disasters, even an infinitely-lived investor will remain uncertain about the exact probability. Our analysis is conducted in continuous time and offers closed-form solutions for asset prices. We distinguish between rational and adaptive Bayesian learning. Rational learners account for the possibility of future changes in beliefs in determining their demand for risky assets, while adaptive learners take beliefs as given. Thus, risky assets tend to be lower-valued and price-dividend ratios vary less under adaptive versus rational learning for identical priors. Keywords: beliefs, Bayesian learning, controlled diffusions and jump processes, learning about jumps, adaptive learning, rational learning. JEL classification: D83, G11, C11, D91, E21, D81, C6
Exploiting Cognitive Structure for Adaptive Learning
Adaptive learning, also known as adaptive teaching, relies on learning path
recommendation, which sequentially recommends personalized learning items
(e.g., lectures, exercises) to satisfy the unique needs of each learner.
Although it is well known that modeling the cognitive structure including
knowledge level of learners and knowledge structure (e.g., the prerequisite
relations) of learning items is important for learning path recommendation,
existing methods for adaptive learning often separately focus on either
knowledge levels of learners or knowledge structure of learning items. To fully
exploit the multifaceted cognitive structure for learning path recommendation,
we propose a Cognitive Structure Enhanced framework for Adaptive Learning,
named CSEAL. By viewing path recommendation as a Markov Decision Process and
applying an actor-critic algorithm, CSEAL can sequentially identify the right
learning items to different learners. Specifically, we first utilize a
recurrent neural network to trace the evolving knowledge levels of learners at
each learning step. Then, we design a navigation algorithm on the knowledge
structure to ensure the logicality of learning paths, which reduces the search
space in the decision process. Finally, the actor-critic algorithm is used to
determine what to learn next and whose parameters are dynamically updated along
the learning path. Extensive experiments on real-world data demonstrate the
effectiveness and robustness of CSEAL.Comment: Accepted by KDD 2019 Research Track. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'19
Exploring participatory design for SNS-based AEH systems
The rapidly emerging and growing social networking sites (SNS) offer an opportunity to improve adaptive e-learning
experience by introducing a social dimension, connecting users within the system. Making connections and providing communication tools can engage students in creating effective learning environment and enriching learning experiences.
Researchers have been working on introducing SNS features into adaptive educational hypermedia systems. The next stage research is centered on how to enhance SNS facilities of AEH systems, in order to engage students’ participation in collaborative learning and generating and enriching learning materials. Students are the core participants in the adaptive e-learning process, so it is essential for the system designers to consider students’ opinions. This paper aims at exploring
how to apply participatory design methodology in the early stage of the SNS-based AEH system design process
Learning Boolean Halfspaces with Small Weights from Membership Queries
We consider the problem of proper learning a Boolean Halfspace with integer
weights from membership queries only. The best known
algorithm for this problem is an adaptive algorithm that asks
membership queries where the best lower bound for the number of membership
queries is [Learning Threshold Functions with Small Weights Using
Membership Queries. COLT 1999]
In this paper we close this gap and give an adaptive proper learning
algorithm with two rounds that asks membership queries. We also give
a non-adaptive proper learning algorithm that asks membership
queries
- …
