5 research outputs found

    Adaptive finite element method assisted by stochastic simulation of chemical systems

    Get PDF
    Stochastic models of chemical systems are often analysed by solving the corresponding\ud Fokker-Planck equation which is a drift-diffusion partial differential equation for the probability\ud distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with non-negligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the probability density

    Accurate reduction of a model of circadian rhythms by delayed quasi steady state assumptions

    Get PDF
    Quasi steady state assumptions are often used to simplify complex systems of ordinary differential equations in modelling of biochemical processes. The simplified system is designed to have the same qualitative properties as the original system and to have a small number of variables. This enables to use the stability and bifurcation analysis to reveal a deeper structure in the dynamics of the original system. This contribution shows that introducing delays to quasi steady state assumptions yields a simplified system that accurately agrees with the original system not only qualitatively but also quantitatively. We derive the proper size of the delays for a particular model of circadian rhythms and present numerical results showing the accuracy of this approach.Comment: Presented at Equadiff 2013 conference in Prague. Accepted for publication in Mathematica Bohemic

    Error Analysis of Diffusion Approximation Methods for Multiscale Systems in Reaction Kinetics

    Get PDF
    Several different methods exist for efficient approximation of paths in multiscale stochastic chemical systems. Another approach is to use bursts of stochastic simulation to estimate the parameters of a stochastic differential equation approximation of the paths. In this paper, multiscale methods for approximating paths are used to formulate different strategies for estimating the dynamics by diffusion processes. We then analyse how efficient and accurate these methods are in a range of different scenarios, and compare their respective advantages and disadvantages to other methods proposed to analyse multiscale chemical networks.Comment: 17 pages, 8 figure

    Noise-induced Mixing and Multimodality in Reaction Networks

    Full text link
    We analyze a class of chemical reaction networks under mass-action kinetics and involving multiple time-scales, whose deterministic and stochastic models display qualitative differences. The networks are inspired by gene-regulatory networks, and consist of a slow-subnetwork, describing conversions among the different gene states, and fast-subnetworks, describing biochemical interactions involving the gene products. We show that the long-term dynamics of such networks can consist of a unique attractor at the deterministic level (unistability), while the long-term probability distribution at the stochastic level may display multiple maxima (multimodality). The dynamical differences stem from a novel phenomenon we call noise-induced mixing, whereby the probability distribution of the gene products is a linear combination of the probability distributions of the fast-subnetworks which are `mixed' by the slow-subnetworks. The results are applied in the context of systems biology, where noise-induced mixing is shown to play a biochemically important role, producing phenomena such as stochastic multimodality and oscillations

    Adaptive finite element method assisted by stochastic simulation of chemical systems

    No full text
    Stochastic models of chemical systems are often analysed by solving the corresponding Fokker-Planck equation which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with non-negligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the probability density
    corecore