9,763 research outputs found

    Accelerated Federated Learning with Decoupled Adaptive Optimization

    Full text link
    The federated learning (FL) framework enables edge clients to collaboratively learn a shared inference model while keeping privacy of training data on clients. Recently, many heuristics efforts have been made to generalize centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc., to federated settings for improving convergence and accuracy. However, there is still a paucity of theoretical principles on where to and how to design and utilize adaptive optimization methods in federated settings. This work aims to develop novel adaptive optimization methods for FL from the perspective of dynamics of ordinary differential equations (ODEs). First, an analytic framework is established to build a connection between federated optimization methods and decompositions of ODEs of corresponding centralized optimizers. Second, based on this analytic framework, a momentum decoupling adaptive optimization method, FedDA, is developed to fully utilize the global momentum on each local iteration and accelerate the training convergence. Last but not least, full batch gradients are utilized to mimic centralized optimization in the end of the training process to ensure the convergence and overcome the possible inconsistency caused by adaptive optimization methods

    Adaptive Federated Minimax Optimization with Lower complexities

    Full text link
    Federated learning is a popular distributed and privacy-preserving machine learning paradigm. Meanwhile, minimax optimization, as an effective hierarchical optimization, is widely applied in machine learning. Recently, some federated optimization methods have been proposed to solve the distributed minimax problems. However, these federated minimax methods still suffer from high gradient and communication complexities. Meanwhile, few algorithm focuses on using adaptive learning rate to accelerate algorithms. To fill this gap, in the paper, we study a class of nonconvex minimax optimization, and propose an efficient adaptive federated minimax optimization algorithm (i.e., AdaFGDA) to solve these distributed minimax problems. Specifically, our AdaFGDA builds on the momentum-based variance reduced and local-SGD techniques, and it can flexibly incorporate various adaptive learning rates by using the unified adaptive matrix. Theoretically, we provide a solid convergence analysis framework for our AdaFGDA algorithm under non-i.i.d. setting. Moreover, we prove our algorithms obtain lower gradient (i.e., stochastic first-order oracle, SFO) complexity of O~(ϵ−3)\tilde{O}(\epsilon^{-3}) with lower communication complexity of O~(ϵ−2)\tilde{O}(\epsilon^{-2}) in finding ϵ\epsilon-stationary point of the nonconvex minimax problems. Experimentally, we conduct some experiments on the deep AUC maximization and robust neural network training tasks to verify efficiency of our algorithms.Comment: Submitted to AISTATS-202

    Federated Zeroth-Order Optimization using Trajectory-Informed Surrogate Gradients

    Full text link
    Federated optimization, an emerging paradigm which finds wide real-world applications such as federated learning, enables multiple clients (e.g., edge devices) to collaboratively optimize a global function. The clients do not share their local datasets and typically only share their local gradients. However, the gradient information is not available in many applications of federated optimization, which hence gives rise to the paradigm of federated zeroth-order optimization (ZOO). Existing federated ZOO algorithms suffer from the limitations of query and communication inefficiency, which can be attributed to (a) their reliance on a substantial number of function queries for gradient estimation and (b) the significant disparity between their realized local updates and the intended global updates. To this end, we (a) introduce trajectory-informed gradient surrogates which is able to use the history of function queries during optimization for accurate and query-efficient gradient estimation, and (b) develop the technique of adaptive gradient correction using these gradient surrogates to mitigate the aforementioned disparity. Based on these, we propose the federated zeroth-order optimization using trajectory-informed surrogate gradients (FZooS) algorithm for query- and communication-efficient federated ZOO. Our FZooS achieves theoretical improvements over the existing approaches, which is supported by our real-world experiments such as federated black-box adversarial attack and federated non-differentiable metric optimization

    Federated Online and Bandit Convex Optimization

    Full text link
    We study the problems of distributed online and bandit convex optimization against an adaptive adversary. We aim to minimize the average regret on MM machines working in parallel over TT rounds with RR intermittent communications. Assuming the underlying cost functions are convex and can be generated adaptively, our results show that collaboration is not beneficial when the machines have access to the first-order gradient information at the queried points. This is in contrast to the case for stochastic functions, where each machine samples the cost functions from a fixed distribution. Furthermore, we delve into the more challenging setting of federated online optimization with bandit (zeroth-order) feedback, where the machines can only access values of the cost functions at the queried points. The key finding here is identifying the high-dimensional regime where collaboration is beneficial and may even lead to a linear speedup in the number of machines. We further illustrate our findings through federated adversarial linear bandits by developing novel distributed single and two-point feedback algorithms. Our work is the first attempt towards a systematic understanding of federated online optimization with limited feedback, and it attains tight regret bounds in the intermittent communication setting for both first and zeroth-order feedback. Our results thus bridge the gap between stochastic and adaptive settings in federated online optimization

    FedGrad: Optimisation in Decentralised Machine Learning

    Full text link
    Federated Learning is a machine learning paradigm where we aim to train machine learning models in a distributed fashion. Many clients/edge devices collaborate with each other to train a single model on the central. Clients do not share their own datasets with each other, decoupling computation and data on the same device. In this paper, we propose yet another adaptive federated optimization method and some other ideas in the field of federated learning. We also perform experiments using these methods and showcase the improvement in the overall performance of federated learning.Comment: 4 pages, 6 figures, submitting @ FL-AAAI Worksho
    • …
    corecore