5 research outputs found

    Adaptive Dual Color Visible Light Communication (VLC) System

    Get PDF
    International audienceIn this work, we propose a Visible Light Communication (VLC) system dynamically adapting, through a decision-making process based on a simple fuzzy-logic, the transmitting color selection to the external environmental conditions. Transmitted Signals are opportunisti-cally treated through softwarization approaches by using basic hardware (i.e. Arduino boards and inexpensive LEDs in the transmitting stage) in order to implement an effective, end-to-end, adaptive communication system. In particular, we will show that, if a low environmental noise is added, the system keeps to be well-performing in terms of Bit Error Rate (BER) also at higher distances (up to 8-9 meters) using a warm white front-end, while, if high external interfering lights are present in the environment , a low power red front end is dynamically fed for maintaining a good-level communication (with low Bit Error Rate)

    Visible Light Indoor Positioning in a Noise-aware Environment

    Get PDF
    International audienceLocalization systems based on Visible Light Communication (VLC) are considered as good candidates for indoor environments, due to their high accuracy, low costs and the possibility of reusing existing infrastructures for both lighting and positioning. However, high level of environmental noises, mainly due to sunlight, significantly affect the performance of VLC positioning systems. A novel approach, for easily measuring environmental noises and compensating their effects, has been proposed in this work. Frequency Division Multiplexing (FDM) is adopted to divide the total bandwidth into a series of non-overlapping frequency sub-bands corresponding to each signal, while an estimation of Signal to Noise Ratio, obtained through real time Power Spectral Density measure, is exploited to compensate error positioning due to sunlight and other wide-band external optical nice sources. Proposed approach has been validated through experimental tests, carried out using a simple deployment of low power lamps, extremely low cost hardware and a Software Defined approach. In the region under test, receiver positions have been experimentally detected according to an improved accuracy in comparison with classical FDM approach, confirming the correctness of proposed technique, according to low Signal to Noise Ratio levels

    A Learning Approach for Robust Carrier Recovery in Heavily Noisy Visible Light Communication

    Get PDF
    International audienceVisible Light Communication (VLC) exploits optical frequencies, diffused by usual LED lamps, for adding data communication features to illuminating systems. This paradigm has attracted a growing interest in both scientific and industrial community in the latter decade. Nevertheless, classical wireless communication mechanisms for physical and Medium Access Control (MAC) layers are hardly available for VLC, due to the massive external interference caused by sunlight. A correct signal carrier recover in high noise conditions represent a significant challenge. In this work, it is shown that the synchronization frame length affects the performance of the system in terms of Bit Error Ratio (BER). Since different external conditions require different minimum preamble lengths, we considered an Artificial Intelligence (AI) approach, based on multi-arm bandit formulation, for obtaining a low impact in both BER and goodput of the communication. A low-cost hardware VLC system, implementing a learning algorithm on a Frequency Shift Keying Modulation (FSK), has been designed and tested in different environmental conditions. Experimental results show that a proper choice of preamble length overcomes, in terms of BER and goodput, the classical approach based on fixed preambles

    Error Compensation in Indoor Positioning Systems based on Software Defined Visible Light Communication

    Get PDF
    International audienceVisible Light Communication (VLC) paradigm allows the reusing of existing illuminating infrastructures in order to provide data communication. VLC can be considered a promising technology also for positioning in indoor environments, due to its potentially high accuracy and low costs. However, the main obstacle to the use of VLC for localization purposes is the high level of environmental noises, mainly due to sunlight. A novel approach, for easily measuring environmental noises and compensating their effects on localization results performed by an Indoor Positioning System (IPS) based on VLC, is proposed in this work. Frequency Division Multiplexing (FDM) is adopted to divide the total bandwidth into a series of non-overlapping frequency sub-bands corresponding to each signal, while an estimation of Signal to Noise Ratio (SNR), obtained through real time Power Spectral Density measurements in the proper frequency ranges, is exploited to compensate the error in positioning due to sunlight and other wide-band external optical disturbing signals. The proposed approach has been validated through experimental tests, carried out using a simple deployment of low power lamps, low cost hardware and a software defined approach. In the region under test, receiver position has been experimentally detected with higher accuracy in comparison to classical FDM approach, confirming the correctness and effectiveness of our proposed technique. In order to further validate the proposed approach, an additive measurement campaign has been successfully carried out considering a scenario characterized by very low SNR levels

    Adaptive Modulation Control for Visible Light Communication Systems

    Get PDF
    International audienceVisible light communication (VLC) builds on the dual use of lightening infrastructure for communication. Even though the advantages of VLC are well known, as emerging communication paradigm, some open issues still need to be addressed in order to rely on it as a robust communication system. First of all, external interference as an extremely varying signal impacting on the reliability of the VLC system needs to be analyzed. In this paper, we propose a system where the link conditions (in terms of signal-to-noise-ratio (SNR)) drive the modulation scheme and this procedure is managed through the use of an uplink/channel, to assure a feedback path. The receiver is in charge of choosing the modulation scheme matching the requirement in terms of error rate on the basis of the measured SNR after noise mitigation. The feasibility of the system and its effectiveness are evaluated by designing and implementing a complete bi-directional system. In particular, an uplink channel sending the information regarding the specific selected modulation technique has been implemented and the whole system is based on a fine synchronization approach in order to "track" in real time the most suitable modulation scheme. Experimental results show the effectiveness of a bi-directional system in order to implement an adaptive VLC system able to follow the environmental changes (in terms of interference and noise)
    corecore