3 research outputs found

    Design of an LMI-based Polytopic LQR Cruise Controller for an Autonomous Vehicle towards Riding Comfort

    Get PDF
    In this paper, we present an LMI-based approach for comfort-oriented cruise control of an autonomous vehicle. First, vehicle longitudinal dynamics and a corresponding parameter-dependent state-space representation are explained and discussed. An LMI-based polytopic LQR controller is then designed for the vehicle speed to track the reference value in the presence of noise and disturbances, where the scheduling parameters are functions of the vehicle mass and the speed itself. An appropriate disturbance force compensation term is also included in the designed controller to provide a smoother response. Then we detail how the reference speed is calculated online, using polynomial functions of the given desired comfort level (quantified by the vertical acceleration absorbed by the human body) and of the road type characterized by road roughness. Finally, time-domain simulations illustrate the method’s effectiveness

    Control of Vehicle Platoons with Collision Avoidance Using Noncooperative Differential Games

    Full text link
    This paper considers a differential game approach to the predecessor-following vehicle platoon control problem without and with collision avoidance. In this approach, each vehicle tries to minimize the performance index (PI) of its control objective, which is reaching consensual velocity with the predecessor vehicle while maintaining a small inter-vehicle distance from it. Two differential games were formulated. The differential game problem for platoon control without collision avoidance is solved for the open-loop Nash equilibrium and its associated state trajectories. The second differential game problem for platoon control with collision avoidance has a non-quadratic PI, which poses a greater challenge to obtaining its open-loop Nash equilibrium. Since the exact solution is unavailable, we propose an estimated Nash strategy approach that is greatly simplified for implementation. An illustrative example of a vehicle platoon control problem was solved under both the without and with collision avoidance scenarios. The results showed the effectiveness of the models and their solutions for both scenarios.Comment: This paper was presented at IEEE ITSC 202
    corecore