4,275 research outputs found

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    Uncoordinated access schemes for the IoT: approaches, regulations, and performance

    Full text link
    Internet of Things (IoT) devices communicate using a variety of protocols, differing in many aspects, with the channel access method being one of the most important. Most of the transmission technologies explicitly designed for IoT and Machine-to-Machine (M2M) communication use either an ALOHA-based channel access or some type of Listen Before Talk (LBT) strategy, based on carrier sensing. In this paper, we provide a comparative overview of the uncoordinated channel access methods for IoT technologies, namely ALOHA-based and LBT schemes, in relation with the ETSI and FCC regulatory frameworks. Furthermore, we provide a performance comparison of these access schemes, both in terms of successful transmissions and energy efficiency, in a typical IoT deployment. Results show that LBT is effective in reducing inter-node interference even for long-range transmissions, though the energy efficiency can be lower than that provided by ALOHA methods. The adoption of rate-adaptation schemes, furthermore, lowers the energy consumption while improving the fairness among nodes at different distances from the receiver. Coexistence issues are also investigated, showing that in massive deployments LBT is severely affected by the presence of ALOHA devices in the same area
    • …
    corecore