4,442 research outputs found

    Adaptive Affinity Fields for Semantic Segmentation

    Full text link
    Semantic segmentation has made much progress with increasingly powerful pixel-wise classifiers and incorporating structural priors via Conditional Random Fields (CRF) or Generative Adversarial Networks (GAN). We propose a simpler alternative that learns to verify the spatial structure of segmentation during training only. Unlike existing approaches that enforce semantic labels on individual pixels and match labels between neighbouring pixels, we propose the concept of Adaptive Affinity Fields (AAF) to capture and match the semantic relations between neighbouring pixels in the label space. We use adversarial learning to select the optimal affinity field size for each semantic category. It is formulated as a minimax problem, optimizing our segmentation neural network in a best worst-case learning scenario. AAF is versatile for representing structures as a collection of pixel-centric relations, easier to train than GAN and more efficient than CRF without run-time inference. Our extensive evaluations on PASCAL VOC 2012, Cityscapes, and GTA5 datasets demonstrate its above-par segmentation performance and robust generalization across domains.Comment: To appear in European Conference on Computer Vision (ECCV) 201

    CaseNet: Content-Adaptive Scale Interaction Networks for Scene Parsing

    Full text link
    Objects in an image exhibit diverse scales. Adaptive receptive fields are expected to catch suitable range of context for accurate pixel level semantic prediction for handling objects of diverse sizes. Recently, atrous convolution with different dilation rates has been used to generate features of multi-scales through several branches and these features are fused for prediction. However, there is a lack of explicit interaction among the branches to adaptively make full use of the contexts. In this paper, we propose a Content-Adaptive Scale Interaction Network (CaseNet) to exploit the multi-scale features for scene parsing. We build the CaseNet based on the classic Atrous Spatial Pyramid Pooling (ASPP) module, followed by the proposed contextual scale interaction (CSI) module, and the scale adaptation (SA) module. Specifically, first, for each spatial position, we enable context interaction among different scales through scale-aware non-local operations across the scales, \ie, CSI module, which facilitates the generation of flexible mixed receptive fields, instead of a traditional flat one. Second, the scale adaptation module (SA) explicitly and softly selects the suitable scale for each spatial position and each channel. Ablation studies demonstrate the effectiveness of the proposed modules. We achieve state-of-the-art performance on three scene parsing benchmarks Cityscapes, ADE20K and LIP

    SEMEDA: Enhancing Segmentation Precision with Semantic Edge Aware Loss

    Full text link
    While nowadays deep neural networks achieve impressive performances on semantic segmentation tasks, they are usually trained by optimizing pixel-wise losses such as cross-entropy. As a result, the predictions outputted by such networks usually struggle to accurately capture the object boundaries and exhibit holes inside the objects. In this paper, we propose a novel approach to improve the structure of the predicted segmentation masks. We introduce a novel semantic edge detection network, which allows to match the predicted and ground truth segmentation masks. This Semantic Edge-Aware strategy (SEMEDA) can be combined with any backbone deep network in an end-to-end training framework. Through thorough experimental validation on Pascal VOC 2012 and Cityscapes datasets, we show that the proposed SEMEDA approach enhances the structure of the predicted segmentation masks by enforcing sharp boundaries and avoiding discontinuities inside objects, improving the segmentation performance. In addition, our semantic edge-aware loss can be integrated into any popular segmentation network without requiring any additional annotation and with negligible computational load, as compared to standard pixel-wise cross-entropy loss

    Box-driven Class-wise Region Masking and Filling Rate Guided Loss for Weakly Supervised Semantic Segmentation

    Full text link
    Semantic segmentation has achieved huge progress via adopting deep Fully Convolutional Networks (FCN). However, the performance of FCN based models severely rely on the amounts of pixel-level annotations which are expensive and time-consuming. To address this problem, it is a good choice to learn to segment with weak supervision from bounding boxes. How to make full use of the class-level and region-level supervisions from bounding boxes is the critical challenge for the weakly supervised learning task. In this paper, we first introduce a box-driven class-wise masking model (BCM) to remove irrelevant regions of each class. Moreover, based on the pixel-level segment proposal generated from the bounding box supervision, we could calculate the mean filling rates of each class to serve as an important prior cue, then we propose a filling rate guided adaptive loss (FR-Loss) to help the model ignore the wrongly labeled pixels in proposals. Unlike previous methods directly training models with the fixed individual segment proposals, our method can adjust the model learning with global statistical information. Thus it can help reduce the negative impacts from wrongly labeled proposals. We evaluate the proposed method on the challenging PASCAL VOC 2012 benchmark and compare with other methods. Extensive experimental results show that the proposed method is effective and achieves the state-of-the-art results.Comment: Accepted by CVPR 201

    Beyond Pixels: A Comprehensive Survey from Bottom-up to Semantic Image Segmentation and Cosegmentation

    Full text link
    Image segmentation refers to the process to divide an image into nonoverlapping meaningful regions according to human perception, which has become a classic topic since the early ages of computer vision. A lot of research has been conducted and has resulted in many applications. However, while many segmentation algorithms exist, yet there are only a few sparse and outdated summarizations available, an overview of the recent achievements and issues is lacking. We aim to provide a comprehensive review of the recent progress in this field. Covering 180 publications, we give an overview of broad areas of segmentation topics including not only the classic bottom-up approaches, but also the recent development in superpixel, interactive methods, object proposals, semantic image parsing and image cosegmentation. In addition, we also review the existing influential datasets and evaluation metrics. Finally, we suggest some design flavors and research directions for future research in image segmentation.Comment: submitted to Elsevier Journal of Visual Communications and Image Representatio

    Scene Parsing with Global Context Embedding

    Full text link
    We present a scene parsing method that utilizes global context information based on both the parametric and non- parametric models. Compared to previous methods that only exploit the local relationship between objects, we train a context network based on scene similarities to generate feature representations for global contexts. In addition, these learned features are utilized to generate global and spatial priors for explicit classes inference. We then design modules to embed the feature representations and the priors into the segmentation network as additional global context cues. We show that the proposed method can eliminate false positives that are not compatible with the global context representations. Experiments on both the MIT ADE20K and PASCAL Context datasets show that the proposed method performs favorably against existing methods.Comment: Accepted in ICCV'17. Code available at https://github.com/hfslyc/GCPNe

    Texture Fuzzy Segmentation using Skew Divergence Adaptive Affinity Functions

    Full text link
    Digital image segmentation is the process of assigning distinct labels to different objects in a digital image, and the fuzzy segmentation algorithm has been successfully used in the segmentation of images from a wide variety of sources. However, the traditional fuzzy segmentation algorithm fails to segment objects that are characterized by textures whose patterns cannot be successfully described by simple statistics computed over a very restricted area. In this paper, we propose an extension of the fuzzy segmentation algorithm that uses adaptive textural affinity functions to perform the segmentation of such objects on bidimensional images. The adaptive affinity functions compute their appropriate neighborhood size as they compute the texture descriptors surrounding the seed spels (spatial elements), according to the characteristics of the texture being processed. The algorithm then segments the image with an appropriate neighborhood for each object. We performed experiments on mosaic images that were composed using images from the Brodatz database, and compared our results with the ones produced by a recently published texture segmentation algorithm, showing the applicability of our method

    Branched Multi-Task Networks: Deciding What Layers To Share

    Full text link
    In the context of multi-task learning, neural networks with branched architectures have often been employed to jointly tackle the tasks at hand. Such ramified networks typically start with a number of shared layers, after which different tasks branch out into their own sequence of layers. Understandably, as the number of possible network configurations is combinatorially large, deciding what layers to share and where to branch out becomes cumbersome. Prior works have either relied on ad hoc methods to determine the level of layer sharing, which is suboptimal, or utilized neural architecture search techniques to establish the network design, which is considerably expensive. In this paper, we go beyond these limitations and propose an approach to automatically construct branched multi-task networks, by leveraging the employed tasks' affinities. Given a specific budget, i.e. number of learnable parameters, the proposed approach generates architectures, in which shallow layers are task-agnostic, whereas deeper ones gradually grow more task-specific. Extensive experimental analysis across numerous, diverse multi-tasking datasets shows that, for a given budget, our method consistently yields networks with the highest performance, while for a certain performance threshold it requires the least amount of learnable parameters.Comment: Accepted at BMVC 202

    Manifold Alignment for Semantically Aligned Style Transfer

    Full text link
    Given a content image and a style image, the goal of style transfer is to synthesize an output image by transferring the target style to the content image. Currently, most of the methods address the problem with global style transfer, assuming styles can be represented by global statistics, such as Gram matrices or covariance matrices. In this paper, we make a different assumption that local semantically aligned (or similar) regions between the content and style images should share similar style patterns. Based on this assumption, content features and style features are seen as two sets of manifolds and a manifold alignment based style transfer (MAST) method is proposed. MAST is a subspace learning method which learns a common subspace of the content and style features. In the common subspace, content and style features with larger feature similarity or the same semantic meaning are forced to be close. The learned projection matrices are added with orthogonality constraints so that the mapping can be bidirectional, which allows us to project the content features into the common subspace, and then into the original style space. By using a pre-trained decoder, promising stylized images are obtained. The method is further extended to allow users to specify corresponding semantic regions between content and style images or using semantic segmentation maps as guidance. Extensive experiments show the proposed MAST achieves appealing results in style transfer.Comment: 10 page

    Pixel-Adaptive Convolutional Neural Networks

    Full text link
    Convolutions are the fundamental building block of CNNs. The fact that their weights are spatially shared is one of the main reasons for their widespread use, but it also is a major limitation, as it makes convolutions content agnostic. We propose a pixel-adaptive convolution (PAC) operation, a simple yet effective modification of standard convolutions, in which the filter weights are multiplied with a spatially-varying kernel that depends on learnable, local pixel features. PAC is a generalization of several popular filtering techniques and thus can be used for a wide range of use cases. Specifically, we demonstrate state-of-the-art performance when PAC is used for deep joint image upsampling. PAC also offers an effective alternative to fully-connected CRF (Full-CRF), called PAC-CRF, which performs competitively, while being considerably faster. In addition, we also demonstrate that PAC can be used as a drop-in replacement for convolution layers in pre-trained networks, resulting in consistent performance improvements.Comment: CVPR 2019. Video introduction: https://youtu.be/gsQZbHuR64
    • …
    corecore