12,981 research outputs found

    GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search

    Full text link
    In this paper, we propose GraphSE2^2, an encrypted graph database for online social network services to address massive data breaches. GraphSE2^2 preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE2^2 provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE2^2 with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE2^2 is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search". It includes the security proof of the proposed scheme. If you want to cite our work, please cite the conference version of i

    Completeness of Randomized Kinodynamic Planners with State-based Steering

    Full text link
    Probabilistic completeness is an important property in motion planning. Although it has been established with clear assumptions for geometric planners, the panorama of completeness results for kinodynamic planners is still incomplete, as most existing proofs rely on strong assumptions that are difficult, if not impossible, to verify on practical systems. In this paper, we focus on an important class of kinodynamic planners, namely those that interpolate trajectories in the state space. We provide a proof of probabilistic completeness for these planners under assumptions that can be readily verified from the system's equations of motion and the user-defined interpolation function. Our proof relies crucially on a property of interpolated trajectories, termed second-order continuity (SOC), which we show is tightly related to the ability of a planner to benefit from denser sampling. We analyze the impact of this property in simulations on a low-torque pendulum. Our results show that a simple RRT using a second-order continuous interpolation swiftly finds solution, while it is impossible for the same planner using standard Bezier curves (which are not SOC) to find any solution.Comment: 21 pages, 5 figure

    A Domain-Independent Algorithm for Plan Adaptation

    Full text link
    The paradigms of transformational planning, case-based planning, and plan debugging all involve a process known as plan adaptation - modifying or repairing an old plan so it solves a new problem. In this paper we provide a domain-independent algorithm for plan adaptation, demonstrate that it is sound, complete, and systematic, and compare it to other adaptation algorithms in the literature. Our approach is based on a view of planning as searching a graph of partial plans. Generative planning starts at the graph's root and moves from node to node using plan-refinement operators. In planning by adaptation, a library plan - an arbitrary node in the plan graph - is the starting point for the search, and the plan-adaptation algorithm can apply both the same refinement operators available to a generative planner and can also retract constraints and steps from the plan. Our algorithm's completeness ensures that the adaptation algorithm will eventually search the entire graph and its systematicity ensures that it will do so without redundantly searching any parts of the graph.Comment: See http://www.jair.org/ for any accompanying file

    Balancing Global Exploration and Local-connectivity Exploitation with Rapidly-exploring Random disjointed-Trees

    Full text link
    Sampling efficiency in a highly constrained environment has long been a major challenge for sampling-based planners. In this work, we propose Rapidly-exploring Random disjointed-Trees* (RRdT*), an incremental optimal multi-query planner. RRdT* uses multiple disjointed-trees to exploit local-connectivity of spaces via Markov Chain random sampling, which utilises neighbourhood information derived from previous successful and failed samples. To balance local exploitation, RRdT* actively explore unseen global spaces when local-connectivity exploitation is unsuccessful. The active trade-off between local exploitation and global exploration is formulated as a multi-armed bandit problem. We argue that the active balancing of global exploration and local exploitation is the key to improving sample efficient in sampling-based motion planners. We provide rigorous proofs of completeness and optimal convergence for this novel approach. Furthermore, we demonstrate experimentally the effectiveness of RRdT*'s locally exploring trees in granting improved visibility for planning. Consequently, RRdT* outperforms existing state-of-the-art incremental planners, especially in highly constrained environments.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Behavioural decisions & welfare

    Get PDF
    If decision-makers (DMs) do not always do what is in their best interest, what do choices reveal about welfare? This paper shows how observed choices can reveal whether the DM is acting in her own best interest. We study a framework that relaxes rationality in a way that is common across a variety of seemingly disconnected positive behavioral models and admits the standard rational choice model as a special case. We model a behavioral DM (boundedly rational) who, in contrast to a standard DM (rational), does not fully internalize all the consequences of her own actions on herself. We provide an axiomatic characterization of choice correspondences consistent with behavioral and standard DMs, propose a choice experiment to infer the divergence between choice and welfare, state an existence result for incomplete preferences and show that the choices of behavioral DMs are, typically, sub-optimal
    corecore