27 research outputs found

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Probabilistic structural mechanics research for parallel processing computers

    Get PDF
    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    An instruction systolic array architecture for multiple neural network types

    Get PDF
    Modern electronic systems, especially sensor and imaging systems, are beginning to incorporate their own neural network subsystems. In order for these neural systems to learn in real-time they must be implemented using VLSI technology, with as much of the learning processes incorporated on-chip as is possible. The majority of current VLSI implementations literally implement a series of neural processing cells, which can be connected together in an arbitrary fashion. Many do not perform the entire neural learning process on-chip, instead relying on other external systems to carry out part of the computation requirements of the algorithm. The work presented here utilises two dimensional instruction systolic arrays in an attempt to define a general neural architecture which is closer to the biological basis of neural networks - it is the synapses themselves, rather than the neurons, that have dedicated processing units. A unified architecture is described which can be programmed at the microcode level in order to facilitate the processing of multiple neural network types. An essential part of neural network processing is the neuron activation function, which can range from a sequential algorithm to a discrete mathematical expression. The architecture presented can easily carry out the sequential functions, and introduces a fast method of mathematical approximation for the more complex functions. This can be evaluated on-chip, thus implementing the entire neural process within a single system. VHDL circuit descriptions for the chip have been generated, and the systolic processing algorithms and associated microcode instruction set for three different neural paradigms have been designed. A software simulator of the architecture has been written, giving results for several common applications in the field

    Dynamically reconfigurable architecture for embedded computer vision systems

    Get PDF
    The objective of this research work is to design, develop and implement a new architecture which integrates on the same chip all the processing levels of a complete Computer Vision system, so that the execution is efficient without compromising the power consumption while keeping a reduced cost. For this purpose, an analysis and classification of different mathematical operations and algorithms commonly used in Computer Vision are carried out, as well as a in-depth review of the image processing capabilities of current-generation hardware devices. This permits to determine the requirements and the key aspects for an efficient architecture. A representative set of algorithms is employed as benchmark to evaluate the proposed architecture, which is implemented on an FPGA-based system-on-chip. Finally, the prototype is compared to other related approaches in order to determine its advantages and weaknesses

    Privaatsust säilitavad paralleelarvutused graafiülesannete jaoks

    Get PDF
    Turvalisel mitmeosalisel arvutusel põhinevate reaalsete privaatsusrakenduste loomine on SMC-protokolli arvutusosaliste ümmarguse keerukuse tõttu keeruline. Privaatsust säilitavate tehnoloogiate uudsuse ja nende probleemidega kaasnevate suurte arvutuskulude tõttu ei ole paralleelseid privaatsust säilitavaid graafikualgoritme veel uuritud. Graafikalgoritmid on paljude arvutiteaduse rakenduste selgroog, nagu navigatsioonisüsteemid, kogukonna tuvastamine, tarneahela võrk, hüperspektraalne kujutis ja hõredad lineaarsed lahendajad. Graafikalgoritmide suurte privaatsete andmekogumite töötlemise kiirendamiseks ja kõrgetasemeliste arvutusnõuete täitmiseks on vaja privaatsust säilitavaid paralleelseid algoritme. Seetõttu esitleb käesolev lõputöö tipptasemel protokolle privaatsuse säilitamise paralleelarvutustes erinevate graafikuprobleemide jaoks, ühe allika lühima tee, kõigi paaride lühima tee, minimaalse ulatuva puu ja metsa ning algebralise tee arvutamise. Need uued protokollid on üles ehitatud kombinatoorsete ja algebraliste graafikualgoritmide põhjal lisaks SMC protokollidele. Nende protokollide koostamiseks kasutatakse ka ühe käsuga mitut andmeoperatsiooni, et vooru keerukust tõhusalt vähendada. Oleme väljapakutud protokollid juurutanud Sharemind SMC platvormil, kasutades erinevaid graafikuid ja võrgukeskkondi. Selles lõputöös kirjeldatakse uudseid paralleelprotokolle koos nendega seotud algoritmide, tulemuste, kiirendamise, hindamiste ja ulatusliku võrdlusuuringuga. Privaatsust säilitavate ühe allika lühimate teede ja minimaalse ulatusega puuprotokollide tegelike juurutuste tulemused näitavad tõhusat meetodit, mis vähendas tööaega võrreldes varasemate töödega sadu kordi. Lisaks ei ole privaatsust säilitavate kõigi paaride lühima tee protokollide hindamine ja ulatuslik võrdlusuuringud sarnased ühegi varasema tööga. Lisaks pole kunagi varem käsitletud privaatsust säilitavaid metsa ja algebralise tee arvutamise protokolle.Constructing real-world privacy applications based on secure multiparty computation is challenging due to the round complexity of the computation parties of SMC protocol. Due to the novelty of privacy-preserving technologies and the high computational costs associated with these problems, parallel privacy-preserving graph algorithms have not yet been studied. Graph algorithms are the backbone of many applications in computer science, such as navigation systems, community detection, supply chain network, hyperspectral image, and sparse linear solvers. In order to expedite the processing of large private data sets for graphs algorithms and meet high-end computational demands, privacy-preserving parallel algorithms are needed. Therefore, this Thesis presents the state-of-the-art protocols in privacy-preserving parallel computations for different graphs problems, single-source shortest path (SSSP), All-pairs shortest path (APSP), minimum spanning tree (MST) and forest (MSF), and algebraic path computation. These new protocols have been constructed based on combinatorial and algebraic graph algorithms on top of the SMC protocols. Single-instruction-multiple-data (SIMD) operations are also used to build those protocols to reduce the round complexities efficiently. We have implemented the proposed protocols on the Sharemind SMC platform using various graphs and network environments. This Thesis outlines novel parallel protocols with their related algorithms, the results, speed-up, evaluations, and extensive benchmarking. The results of the real implementations of the privacy-preserving single-source shortest paths and minimum spanning tree protocols show an efficient method that reduced the running time hundreds of times compared with previous works. Furthermore, the evaluation and extensive benchmarking of privacy-preserving All-pairs shortest path protocols are not similar to any previous work. Moreover, the privacy-preserving minimum spanning forest and algebraic path computation protocols have never been addressed before.https://www.ester.ee/record=b555865

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    The NASA research and technology program for FY 1990 is presented. The summary portions is compiled of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and universities. The first section containing citations and abstracts of the RTOPs is followed by four indices: Subject; Technical Monitor; Responsible NASA Organization; and RTOP number

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore