70,888 research outputs found

    Towards Adapting ImageNet to Reality: Scalable Domain Adaptation with Implicit Low-rank Transformations

    Full text link
    Images seen during test time are often not from the same distribution as images used for learning. This problem, known as domain shift, occurs when training classifiers from object-centric internet image databases and trying to apply them directly to scene understanding tasks. The consequence is often severe performance degradation and is one of the major barriers for the application of classifiers in real-world systems. In this paper, we show how to learn transform-based domain adaptation classifiers in a scalable manner. The key idea is to exploit an implicit rank constraint, originated from a max-margin domain adaptation formulation, to make optimization tractable. Experiments show that the transformation between domains can be very efficiently learned from data and easily applied to new categories. This begins to bridge the gap between large-scale internet image collections and object images captured in everyday life environments

    LSDA: Large Scale Detection Through Adaptation

    Full text link
    A major challenge in scaling object detection is the difficulty of obtaining labeled images for large numbers of categories. Recently, deep convolutional neural networks (CNNs) have emerged as clear winners on object classification benchmarks, in part due to training with 1.2M+ labeled classification images. Unfortunately, only a small fraction of those labels are available for the detection task. It is much cheaper and easier to collect large quantities of image-level labels from search engines than it is to collect detection data and label it with precise bounding boxes. In this paper, we propose Large Scale Detection through Adaptation (LSDA), an algorithm which learns the difference between the two tasks and transfers this knowledge to classifiers for categories without bounding box annotated data, turning them into detectors. Our method has the potential to enable detection for the tens of thousands of categories that lack bounding box annotations, yet have plenty of classification data. Evaluation on the ImageNet LSVRC-2013 detection challenge demonstrates the efficacy of our approach. This algorithm enables us to produce a >7.6K detector by using available classification data from leaf nodes in the ImageNet tree. We additionally demonstrate how to modify our architecture to produce a fast detector (running at 2fps for the 7.6K detector). Models and software are available a

    Class-Agnostic Counting

    Full text link
    Nearly all existing counting methods are designed for a specific object class. Our work, however, aims to create a counting model able to count any class of object. To achieve this goal, we formulate counting as a matching problem, enabling us to exploit the image self-similarity property that naturally exists in object counting problems. We make the following three contributions: first, a Generic Matching Network (GMN) architecture that can potentially count any object in a class-agnostic manner; second, by reformulating the counting problem as one of matching objects, we can take advantage of the abundance of video data labeled for tracking, which contains natural repetitions suitable for training a counting model. Such data enables us to train the GMN. Third, to customize the GMN to different user requirements, an adapter module is used to specialize the model with minimal effort, i.e. using a few labeled examples, and adapting only a small fraction of the trained parameters. This is a form of few-shot learning, which is practical for domains where labels are limited due to requiring expert knowledge (e.g. microbiology). We demonstrate the flexibility of our method on a diverse set of existing counting benchmarks: specifically cells, cars, and human crowds. The model achieves competitive performance on cell and crowd counting datasets, and surpasses the state-of-the-art on the car dataset using only three training images. When training on the entire dataset, the proposed method outperforms all previous methods by a large margin.Comment: Asian Conference on Computer Vision (ACCV), 201

    Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes

    Full text link
    During the last half decade, convolutional neural networks (CNNs) have triumphed over semantic segmentation, which is one of the core tasks in many applications such as autonomous driving. However, to train CNNs requires a considerable amount of data, which is difficult to collect and laborious to annotate. Recent advances in computer graphics make it possible to train CNNs on photo-realistic synthetic imagery with computer-generated annotations. Despite this, the domain mismatch between the real images and the synthetic data cripples the models' performance. Hence, we propose a curriculum-style learning approach to minimize the domain gap in urban scenery semantic segmentation. The curriculum domain adaptation solves easy tasks first to infer necessary properties about the target domain; in particular, the first task is to learn global label distributions over images and local distributions over landmark superpixels. These are easy to estimate because images of urban scenes have strong idiosyncrasies (e.g., the size and spatial relations of buildings, streets, cars, etc.). We then train a segmentation network while regularizing its predictions in the target domain to follow those inferred properties. In experiments, our method outperforms the baselines on two datasets and two backbone networks. We also report extensive ablation studies about our approach.Comment: This is the extended version of the ICCV 2017 paper "Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes" with additional GTA experimen
    • …
    corecore