19,467 research outputs found

    Adapting Progress Feedback and Emotional Support to Learner Personality

    Get PDF
    Peer reviewedPostprin

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the student’s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the student’s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers

    The Tutor's Role

    Get PDF
    This chapter addresses three questions about being an effective online tutor: 1. Why do we still think that online tutoring can principally draw its basis from face-to-face group processes and dynamics or traditional pedagogy? 2. Does the literature tell us anything more than we would make as an intelligent guess? 3. Do we really know what an ‘effective’ online tutor would be doing? The OTiS participants have gone some way to answering these questions, through the presentation and discussion of their own online tutoring experiences. Literature in this area is still limited, and suffers from the need for timeliness of publication to be useful. Intelligent guesses are all very well, but much better as a source of information for online tutors are the reflections and documented experiences of practitioners. These experiences reveal that face-to-face pedagogy has some elements to offer the online tutor, but that there are key differences and there is a need to examine the processes and dynamics of online learning to inform online tutoring

    Chapter 4: New Assessment Methods

    Get PDF
    The OTiS (Online Teaching in Scotland) programme, run by the now defunct Scotcit programme, ran an International e-Workshop on Developing Online Tutoring Skills which was held between 8–12 May 2000. It was organised by Heriot–Watt University, Edinburgh and The Robert Gordon University, Aberdeen, UK. Out of this workshop came the seminal Online Tutoring E-Book, a generic primer on e-learning pedagogy and methodology, full of practical implementation guidelines. Although the Scotcit programme ended some years ago, the E-Book has been copied to the SONET site as a series of PDF files, which are now available via the ALT Open Access Repository. The editor, Carol Higgison, is currently working in e-learning at the University of Bradford (see her staff profile) and is the Chair of the Association for Learning Technology (ALT)

    Mitigating User Frustration through Adaptive Feedback based on Human-Automation Etiquette Strategies

    Get PDF
    The objective of this study is to investigate the effects of feedback and user frustration in human-computer interaction (HCI) and examine how to mitigate user frustration through feedback based on human-automation etiquette strategies. User frustration in HCI indicates a negative feeling that occurs when efforts to achieve a goal are impeded. User frustration impacts not only the communication with the computer itself, but also productivity, learning, and cognitive workload. Affect-aware systems have been studied to recognize user emotions and respond in different ways. Affect-aware systems need to be adaptive systems that change their behavior depending on users’ emotions. Adaptive systems have four categories of adaptations. Previous research has focused on primarily function allocation and to a lesser extent information content and task scheduling. However, the fourth approach, changing the interaction styles is the least explored because of the interplay of human factors considerations. Three interlinked studies were conducted to investigate the consequences of user frustration and explore mitigation techniques. Study 1 showed that delayed feedback from the system led to higher user frustration, anger, cognitive workload, and physiological arousal. In addition, delayed feedback decreased task performance and system usability in a human-robot interaction (HRI) context. Study 2 evaluated a possible approach of mitigating user frustration by applying human-human etiquette strategies in a tutoring context. The results of Study 2 showed that changing etiquette strategies led to changes in performance, motivation, confidence, and satisfaction. The most effective etiquette strategies changed when users were frustrated. Based on these results, an adaptive tutoring system prototype was developed and evaluated in Study 3. By utilizing a rule set derived from Study 2, the tutor was able to use different automation etiquette strategies to target and improve motivation, confidence, satisfaction, and performance using different strategies, under different levels of user frustration. This work establishes that changing the interaction style alone of a computer tutor can affect a user’s motivation, confidence, satisfaction, and performance. Furthermore, the beneficial effect of changing etiquette strategies is greater when users are frustrated. This work provides a basis for future work to develop affect-aware adaptive systems to mitigate user frustration

    An open learner model for trainee pilots

    Get PDF
    This paper investigates the potential for simple open learner models for highly motivated, independent learners, using the example of trainee pilots. In particular we consider whether such users access their learner model to help them identify their current knowledge level, areas of difficulty and specific misconceptions, to help them plan their immediate learning activities; and whether they find a longer‐term planning aid useful. The Flight Club open learner model was deployed in a UK flight school over four weeks. Results suggest that motivated users such as trainee pilots will use a system with a simple open learner model, and are interested in consulting their learner model information both to facilitate planning over time, and to understand their current knowledge state. We discuss the extent to which our findings may be relevant to learners in other contexts

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments
    corecore