2 research outputs found

    Experimental Study of Phase Transition in Pedestrian Flow

    Get PDF
    The transition between low and high density phases is a typical feature of systems with social interactions. This contribution focuses on simple evacuation design of one room with one entrance and one exit; four passing-through experiments were organized and evaluated by means of automatic image processing. The phase of the system, determined by travel time and occupancy, is evaluated with respect to the inflow, a controlled boundary condition. Critical values of inflow and outflow were described with respect to the transition from low density to congested state. Moreover, microscopic analysis of travel time is provided.Comment: To appear in proceedings of Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, Elsevie

    The Superposition Principle: A Conceptual Perspective on Pedestrian Stream Simulations

    Get PDF
    Models using a superposition of scalar fields for navigation are prevalent in microscopic pedestrian stream simulations. However, classifications, differences, and similarities of models are not clear at the conceptual level of navigation mechanisms. In this paper, we describe the superposition of scalar fields as an approach to microscopic crowd modelling and corresponding motion schemes. We use this background discussion to focus on the similarities and differences of models, and find that many models make use of similar mechanisms for the navigation of virtual agents. In some cases, the differences between models can be reduced to differences between discretisation schemes. The interpretation of scalar fields varies across models, but most of the time this variation does not have a large impact on simulation outcomes. The conceptual analysis of different models of pedestrian dynamics allows for a better understanding of their capabilities and limitations and may lead to better model development and validation
    corecore