2 research outputs found

    Acyclic 4-choosability of planar graphs without 4-cycles

    Get PDF
    summary:A proper vertex coloring of a graph GG is acyclic if there is no bicolored cycle in GG. In other words, each cycle of GG must be colored with at least three colors. Given a list assignment L={L(v) ⁣:vV}L=\{L(v)\colon v\in V\}, if there exists an acyclic coloring π\pi of GG such that π(v)L(v)\pi (v)\in L(v) for all vVv\in V, then we say that GG is acyclically LL-colorable. If GG is acyclically LL-colorable for any list assignment LL with L(v)k|L(v)|\ge k for all vVv\in V, then GG is acyclically kk-choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles is acyclically 4-choosable. However, this has been as yet verified only for some restricted classes of planar graphs. In this paper, we prove that every planar graph with neither 4-cycles nor intersecting ii-cycles for each i{3,5}i\in \{3,5\} is acyclically 4-choosable
    corecore