162 research outputs found

    Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting

    Full text link
    Inspired by how humans summarize long documents, we propose an accurate and fast summarization model that first selects salient sentences and then rewrites them abstractively (i.e., compresses and paraphrases) to generate a concise overall summary. We use a novel sentence-level policy gradient method to bridge the non-differentiable computation between these two neural networks in a hierarchical way, while maintaining language fluency. Empirically, we achieve the new state-of-the-art on all metrics (including human evaluation) on the CNN/Daily Mail dataset, as well as significantly higher abstractiveness scores. Moreover, by first operating at the sentence-level and then the word-level, we enable parallel decoding of our neural generative model that results in substantially faster (10-20x) inference speed as well as 4x faster training convergence than previous long-paragraph encoder-decoder models. We also demonstrate the generalization of our model on the test-only DUC-2002 dataset, where we achieve higher scores than a state-of-the-art model.Comment: ACL 2018 (17 pages

    Abstractive Summarization Using Attentive Neural Techniques

    Full text link
    In a world of proliferating data, the ability to rapidly summarize text is growing in importance. Automatic summarization of text can be thought of as a sequence to sequence problem. Another area of natural language processing that solves a sequence to sequence problem is machine translation, which is rapidly evolving due to the development of attention-based encoder-decoder networks. This work applies these modern techniques to abstractive summarization. We perform analysis on various attention mechanisms for summarization with the goal of developing an approach and architecture aimed at improving the state of the art. In particular, we modify and optimize a translation model with self-attention for generating abstractive sentence summaries. The effectiveness of this base model along with attention variants is compared and analyzed in the context of standardized evaluation sets and test metrics. However, we show that these metrics are limited in their ability to effectively score abstractive summaries, and propose a new approach based on the intuition that an abstractive model requires an abstractive evaluation.Comment: Accepted for oral presentation at the 15th International Conference on Natural Language Processing (ICON 2018

    Deep Reinforced Self-Attention Masks for Abstractive Summarization (DR.SAS)

    Full text link
    We present a novel architectural scheme to tackle the abstractive summarization problem based on the CNN/DMdataset which fuses Reinforcement Learning (RL) withUniLM, which is a pre-trained Deep Learning Model, to solve various natural language tasks. We have tested the limits of learning fine-grained attention in Transformers to improve the summarization quality. UniLM applies attention to the entire token space in a global fashion. We propose DR.SAS which applies the Actor-Critic (AC) algorithm to learn a dynamic self-attention distribution over the tokens to reduce redundancy and generate factual and coherent summaries to improve the quality of summarization. After performing hyperparameter tuning, we achievedbetter ROUGE results compared to the baseline. Our model tends to be more extractive/factual yet coherent in detail because of optimization over ROUGE rewards. We present detailed error analysis with examples of the strengths and limitations of our model. Our codebase will be publicly available on our GitHub

    Neural Abstractive Text Summarization with Sequence-to-Sequence Models

    Full text link
    In the past few years, neural abstractive text summarization with sequence-to-sequence (seq2seq) models have gained a lot of popularity. Many interesting techniques have been proposed to improve seq2seq models, making them capable of handling different challenges, such as saliency, fluency and human readability, and generate high-quality summaries. Generally speaking, most of these techniques differ in one of these three categories: network structure, parameter inference, and decoding/generation. There are also other concerns, such as efficiency and parallelism for training a model. In this paper, we provide a comprehensive literature survey on different seq2seq models for abstractive text summarization from the viewpoint of network structures, training strategies, and summary generation algorithms. Several models were first proposed for language modeling and generation tasks, such as machine translation, and later applied to abstractive text summarization. Hence, we also provide a brief review of these models. As part of this survey, we also develop an open source library, namely, Neural Abstractive Text Summarizer (NATS) toolkit, for the abstractive text summarization. An extensive set of experiments have been conducted on the widely used CNN/Daily Mail dataset to examine the effectiveness of several different neural network components. Finally, we benchmark two models implemented in NATS on the two recently released datasets, namely, Newsroom and Bytecup

    Deep Reinforcement Learning For Sequence to Sequence Models

    Full text link
    In recent times, sequence-to-sequence (seq2seq) models have gained a lot of popularity and provide state-of-the-art performance in a wide variety of tasks such as machine translation, headline generation, text summarization, speech to text conversion, and image caption generation. The underlying framework for all these models is usually a deep neural network comprising an encoder and a decoder. Although simple encoder-decoder models produce competitive results, many researchers have proposed additional improvements over these sequence-to-sequence models, e.g., using an attention-based model over the input, pointer-generation models, and self-attention models. However, such seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently, a completely novel point of view has emerged in addressing these two problems in seq2seq models, leveraging methods from reinforcement learning (RL). In this survey, we consider seq2seq problems from the RL point of view and provide a formulation combining the power of RL methods in decision-making with sequence-to-sequence models that enable remembering long-term memories. We present some of the most recent frameworks that combine concepts from RL and deep neural networks and explain how these two areas could benefit from each other in solving complex seq2seq tasks. Our work aims to provide insights into some of the problems that inherently arise with current approaches and how we can address them with better RL models. We also provide the source code for implementing most of the RL models discussed in this paper to support the complex task of abstractive text summarization

    Deconvolutional Paragraph Representation Learning

    Full text link
    Learning latent representations from long text sequences is an important first step in many natural language processing applications. Recurrent Neural Networks (RNNs) have become a cornerstone for this challenging task. However, the quality of sentences during RNN-based decoding (reconstruction) decreases with the length of the text. We propose a sequence-to-sequence, purely convolutional and deconvolutional autoencoding framework that is free of the above issue, while also being computationally efficient. The proposed method is simple, easy to implement and can be leveraged as a building block for many applications. We show empirically that compared to RNNs, our framework is better at reconstructing and correcting long paragraphs. Quantitative evaluation on semi-supervised text classification and summarization tasks demonstrate the potential for better utilization of long unlabeled text data.Comment: Accepted by NIPS 201

    A Survey on Neural Network-Based Summarization Methods

    Full text link
    Automatic text summarization, the automated process of shortening a text while reserving the main ideas of the document(s), is a critical research area in natural language processing. The aim of this literature review is to survey the recent work on neural-based models in automatic text summarization. We examine in detail ten state-of-the-art neural-based summarizers: five abstractive models and five extractive models. In addition, we discuss the related techniques that can be applied to the summarization tasks and present promising paths for future research in neural-based summarization.Comment: 16 pages, 4 table

    Contrastive Attention Mechanism for Abstractive Sentence Summarization

    Full text link
    We propose a contrastive attention mechanism to extend the sequence-to-sequence framework for abstractive sentence summarization task, which aims to generate a brief summary of a given source sentence. The proposed contrastive attention mechanism accommodates two categories of attention: one is the conventional attention that attends to relevant parts of the source sentence, the other is the opponent attention that attends to irrelevant or less relevant parts of the source sentence. Both attentions are trained in an opposite way so that the contribution from the conventional attention is encouraged and the contribution from the opponent attention is discouraged through a novel softmax and softmin functionality. Experiments on benchmark datasets show that, the proposed contrastive attention mechanism is more focused on the relevant parts for the summary than the conventional attention mechanism, and greatly advances the state-of-the-art performance on the abstractive sentence summarization task. We release the code at https://github.com/travel-go/Abstractive-Text-SummarizationComment: accepted by EMNLP201

    Summary Level Training of Sentence Rewriting for Abstractive Summarization

    Full text link
    As an attempt to combine extractive and abstractive summarization, Sentence Rewriting models adopt the strategy of extracting salient sentences from a document first and then paraphrasing the selected ones to generate a summary. However, the existing models in this framework mostly rely on sentence-level rewards or suboptimal labels, causing a mismatch between a training objective and evaluation metric. In this paper, we present a novel training signal that directly maximizes summary-level ROUGE scores through reinforcement learning. In addition, we incorporate BERT into our model, making good use of its ability on natural language understanding. In extensive experiments, we show that a combination of our proposed model and training procedure obtains new state-of-the-art performance on both CNN/Daily Mail and New York Times datasets. We also demonstrate that it generalizes better on DUC-2002 test set.Comment: EMNLP 2019 Workshop on New Frontiers in Summarizatio

    Learning to Encode Text as Human-Readable Summaries using Generative Adversarial Networks

    Full text link
    Auto-encoders compress input data into a latent-space representation and reconstruct the original data from the representation. This latent representation is not easily interpreted by humans. In this paper, we propose training an auto-encoder that encodes input text into human-readable sentences, and unpaired abstractive summarization is thereby achieved. The auto-encoder is composed of a generator and a reconstructor. The generator encodes the input text into a shorter word sequence, and the reconstructor recovers the generator input from the generator output. To make the generator output human-readable, a discriminator restricts the output of the generator to resemble human-written sentences. By taking the generator output as the summary of the input text, abstractive summarization is achieved without document-summary pairs as training data. Promising results are shown on both English and Chinese corpora.Comment: Accepted by EMNLP 201
    • …
    corecore