45,417 research outputs found

    Experimenting with the Gaze of a Conversational Agent

    Get PDF
    We have carried out a pilot experiment to investigate the effects of different eye gaze behaviors of a cartoon-like talking face on the quality of human-agent dialogues. We compared a version of the talking face that roughly implements some patterns of humanlike behavior with two other versions. We called this the optimal version. In one of the other versions the shifts in gaze were kept minimal and in the other version the shifts would occur randomly. The talking face has a number of restrictions. There is no speech recognition, so questions and replies have to\ud be typed in by the users of the systems. Despite this restriction we found that participants that conversed with the optimal agent appreciated the agent more than participants that conversed with the other agents. Conversations with the optimal version proceeded more efficiently. Participants needed less time to complete their task

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Controlling the Gaze of Conversational Agents

    Get PDF
    We report on a pilot experiment that investigated the effects of different eye gaze behaviours of a cartoon-like talking face on the quality of human-agent dialogues. We compared a version of the talking face that roughly implements some patterns of human-like behaviour with\ud two other versions. In one of the other versions the shifts in gaze were kept minimal and in the other version the shifts would occur randomly. The talking face has a number of restrictions. There is no speech recognition, so questions and replies have to be typed in by the users\ud of the systems. Despite this restriction we found that participants that conversed with the agent that behaved according to the human-like patterns appreciated the agent better than participants that conversed with the other agents. Conversations with the optimal version also\ud proceeded more efficiently. Participants needed less time to complete their task

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior
    corecore