2,039,872 research outputs found

    Generalized Rank Pooling for Activity Recognition

    Full text link
    Most popular deep models for action recognition split video sequences into short sub-sequences consisting of a few frames; frame-based features are then pooled for recognizing the activity. Usually, this pooling step discards the temporal order of the frames, which could otherwise be used for better recognition. Towards this end, we propose a novel pooling method, generalized rank pooling (GRP), that takes as input, features from the intermediate layers of a CNN that is trained on tiny sub-sequences, and produces as output the parameters of a subspace which (i) provides a low-rank approximation to the features and (ii) preserves their temporal order. We propose to use these parameters as a compact representation for the video sequence, which is then used in a classification setup. We formulate an objective for computing this subspace as a Riemannian optimization problem on the Grassmann manifold, and propose an efficient conjugate gradient scheme for solving it. Experiments on several activity recognition datasets show that our scheme leads to state-of-the-art performance.Comment: Accepted at IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Going Deeper into First-Person Activity Recognition

    Full text link
    We bring together ideas from recent work on feature design for egocentric action recognition under one framework by exploring the use of deep convolutional neural networks (CNN). Recent work has shown that features such as hand appearance, object attributes, local hand motion and camera ego-motion are important for characterizing first-person actions. To integrate these ideas under one framework, we propose a twin stream network architecture, where one stream analyzes appearance information and the other stream analyzes motion information. Our appearance stream encodes prior knowledge of the egocentric paradigm by explicitly training the network to segment hands and localize objects. By visualizing certain neuron activation of our network, we show that our proposed architecture naturally learns features that capture object attributes and hand-object configurations. Our extensive experiments on benchmark egocentric action datasets show that our deep architecture enables recognition rates that significantly outperform state-of-the-art techniques -- an average 6.6%6.6\% increase in accuracy over all datasets. Furthermore, by learning to recognize objects, actions and activities jointly, the performance of individual recognition tasks also increase by 30%30\% (actions) and 14%14\% (objects). We also include the results of extensive ablative analysis to highlight the importance of network design decisions.
    corecore