1,263 research outputs found

    Active-set Methods for Submodular Minimization Problems

    Get PDF
    International audienceWe consider the submodular function minimization (SFM) and the quadratic minimization problemsregularized by the Lov'asz extension of the submodular function. These optimization problemsare intimately related; for example,min-cut problems and total variation denoising problems, wherethe cut function is submodular and its Lov'asz extension is given by the associated total variation.When a quadratic loss is regularized by the total variation of a cut function, it thus becomes atotal variation denoising problem and we use the same terminology in this paper for “general” submodularfunctions. We propose a new active-set algorithm for total variation denoising with theassumption of an oracle that solves the corresponding SFM problem. This can be seen as localdescent algorithm over ordered partitions with explicit convergence guarantees. It is more flexiblethan the existing algorithms with the ability for warm-restarts using the solution of a closely relatedproblem. Further, we also consider the case when a submodular function can be decomposed intothe sum of two submodular functions F1 and F2 and assume SFM oracles for these two functions.We propose a new active-set algorithm for total variation denoising (and hence SFM by thresholdingthe solution at zero). This algorithm also performs local descent over ordered partitions and itsability to warm start considerably improves the performance of the algorithm. In the experiments,we compare the performance of the proposed algorithms with state-of-the-art algorithms, showingthat it reduces the calls to SFM oracles

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    A Combinatorial, Strongly Polynomial-Time Algorithm for Minimizing Submodular Functions

    Full text link
    This paper presents the first combinatorial polynomial-time algorithm for minimizing submodular set functions, answering an open question posed in 1981 by Grotschel, Lovasz, and Schrijver. The algorithm employs a scaling scheme that uses a flow in the complete directed graph on the underlying set with each arc capacity equal to the scaled parameter. The resulting algorithm runs in time bounded by a polynomial in the size of the underlying set and the largest length of the function value. The paper also presents a strongly polynomial-time version that runs in time bounded by a polynomial in the size of the underlying set independent of the function value.Comment: 17 page

    On the Convergence Rate of Decomposable Submodular Function Minimization

    Full text link
    Submodular functions describe a variety of discrete problems in machine learning, signal processing, and computer vision. However, minimizing submodular functions poses a number of algorithmic challenges. Recent work introduced an easy-to-use, parallelizable algorithm for minimizing submodular functions that decompose as the sum of "simple" submodular functions. Empirically, this algorithm performs extremely well, but no theoretical analysis was given. In this paper, we show that the algorithm converges linearly, and we provide upper and lower bounds on the rate of convergence. Our proof relies on the geometry of submodular polyhedra and draws on results from spectral graph theory.Comment: 17 pages, 3 figure
    • …
    corecore