25,694 research outputs found

    Predicting the Next Best View for 3D Mesh Refinement

    Full text link
    3D reconstruction is a core task in many applications such as robot navigation or sites inspections. Finding the best poses to capture part of the scene is one of the most challenging topic that goes under the name of Next Best View. Recently, many volumetric methods have been proposed; they choose the Next Best View by reasoning over a 3D voxelized space and by finding which pose minimizes the uncertainty decoded into the voxels. Such methods are effective, but they do not scale well since the underlaying representation requires a huge amount of memory. In this paper we propose a novel mesh-based approach which focuses on the worst reconstructed region of the environment mesh. We define a photo-consistent index to evaluate the 3D mesh accuracy, and an energy function over the worst regions of the mesh which takes into account the mutual parallax with respect to the previous cameras, the angle of incidence of the viewing ray to the surface and the visibility of the region. We test our approach over a well known dataset and achieve state-of-the-art results.Comment: 13 pages, 5 figures, to be published in IAS-1

    Learning to Look Around: Intelligently Exploring Unseen Environments for Unknown Tasks

    Full text link
    It is common to implicitly assume access to intelligently captured inputs (e.g., photos from a human photographer), yet autonomously capturing good observations is itself a major challenge. We address the problem of learning to look around: if a visual agent has the ability to voluntarily acquire new views to observe its environment, how can it learn efficient exploratory behaviors to acquire informative observations? We propose a reinforcement learning solution, where the agent is rewarded for actions that reduce its uncertainty about the unobserved portions of its environment. Based on this principle, we develop a recurrent neural network-based approach to perform active completion of panoramic natural scenes and 3D object shapes. Crucially, the learned policies are not tied to any recognition task nor to the particular semantic content seen during training. As a result, 1) the learned "look around" behavior is relevant even for new tasks in unseen environments, and 2) training data acquisition involves no manual labeling. Through tests in diverse settings, we demonstrate that our approach learns useful generic policies that transfer to new unseen tasks and environments. Completion episodes are shown at https://goo.gl/BgWX3W

    Active vision for dexterous grasping of novel objects

    Get PDF
    How should a robot direct active vision so as to ensure reliable grasping? We answer this question for the case of dexterous grasping of unfamiliar objects. By dexterous grasping we simply mean grasping by any hand with more than two fingers, such that the robot has some choice about where to place each finger. Such grasps typically fail in one of two ways, either unmodeled objects in the scene cause collisions or object reconstruction is insufficient to ensure that the grasp points provide a stable force closure. These problems can be solved more easily if active sensing is guided by the anticipated actions. Our approach has three stages. First, we take a single view and generate candidate grasps from the resulting partial object reconstruction. Second, we drive the active vision approach to maximise surface reconstruction quality around the planned contact points. During this phase, the anticipated grasp is continually refined. Third, we direct gaze to improve the safety of the planned reach to grasp trajectory. We show, on a dexterous manipulator with a camera on the wrist, that our approach (80.4% success rate) outperforms a randomised algorithm (64.3% success rate).Comment: IROS 2016. Supplementary video: https://youtu.be/uBSOO6tMzw
    • …
    corecore