20 research outputs found

    Human Active Learning

    Get PDF
    Active machine learning (AML) is a popular research area in machine learning. It allows selection of the most informative instances in training data of the domain for manual labeling. AML aims to produce a highly accurate classifier using as few labeled instances as possible, thereby minimizing the cost of obtaining labeled data. As machines can learn from experience like humans do, using AML for human category learning may help human learning become more efficient and hence reduce the cost of teaching. This chapter is a review of recent research literature concerning the use of AML technique to enhance human learning and teaching. There are a few studies on the applications of AML to the human category learning domain. The most interesting study was by Castro et al., which showed that humans learn faster with better performance when they can actively select the informative instances from a pool of unlabeled data instead of random sampling. Although AML can facilitate object categorization for humans, there are still many challenges and questions that need to be addressed in the use of AML for modeling human categorization. In this chapter, we will discuss some of these challenges

    DAugNet: Unsupervised, Multi-source, Multi-target, and Life-long Domain Adaptation for Semantic Segmentation of Satellite Images

    Full text link
    The domain adaptation of satellite images has recently gained an increasing attention to overcome the limited generalization abilities of machine learning models when segmenting large-scale satellite images. Most of the existing approaches seek for adapting the model from one domain to another. However, such single-source and single-target setting prevents the methods from being scalable solutions, since nowadays multiple source and target domains having different data distributions are usually available. Besides, the continuous proliferation of satellite images necessitates the classifiers to adapt to continuously increasing data. We propose a novel approach, coined DAugNet, for unsupervised, multi-source, multi-target, and life-long domain adaptation of satellite images. It consists of a classifier and a data augmentor. The data augmentor, which is a shallow network, is able to perform style transfer between multiple satellite images in an unsupervised manner, even when new data are added over the time. In each training iteration, it provides the classifier with diversified data, which makes the classifier robust to large data distribution difference between the domains. Our extensive experiments prove that DAugNet significantly better generalizes to new geographic locations than the existing approaches

    MLAN: Multi-Level Adversarial Network for Domain Adaptive Semantic Segmentation

    Full text link
    Recent progresses in domain adaptive semantic segmentation demonstrate the effectiveness of adversarial learning (AL) in unsupervised domain adaptation. However, most adversarial learning based methods align source and target distributions at a global image level but neglect the inconsistency around local image regions. This paper presents a novel multi-level adversarial network (MLAN) that aims to address inter-domain inconsistency at both global image level and local region level optimally. MLAN has two novel designs, namely, region-level adversarial learning (RL-AL) and co-regularized adversarial learning (CR-AL). Specifically, RL-AL models prototypical regional context-relations explicitly in the feature space of a labelled source domain and transfers them to an unlabelled target domain via adversarial learning. CR-AL fuses region-level AL and image-level AL optimally via mutual regularization. In addition, we design a multi-level consistency map that can guide domain adaptation in both input space (i.e.i.e., image-to-image translation) and output space (i.e.i.e., self-training) effectively. Extensive experiments show that MLAN outperforms the state-of-the-art with a large margin consistently across multiple datasets.Comment: Submitted to P

    Multi-Domain Active Learning: A Comparative Study

    Full text link
    Building classifiers on multiple domains is a practical problem in the real life. Instead of building classifiers one by one, multi-domain learning (MDL) simultaneously builds classifiers on multiple domains. MDL utilizes the information shared among the domains to improve the performance. As a supervised learning problem, the labeling effort is still high in MDL problems. Usually, this high labeling cost issue could be relieved by using active learning. Thus, it is natural to utilize active learning to reduce the labeling effort in MDL, and we refer this setting as multi-domain active learning (MDAL). However, there are only few works which are built on this setting. And when the researches have to face this problem, there is no off-the-shelf solutions. Under this circumstance, combining the current multi-domain learning models and single-domain active learning strategies might be a preliminary solution for MDAL problem. To find out the potential of this preliminary solution, a comparative study over 5 models and 4 selection strategies is made in this paper. To the best of our knowledge, this is the first work provides the formal definition of MDAL. Besides, this is the first comparative work for MDAL problem. From the results, the Multinomial Adversarial Networks (MAN) model with a simple best vs second best (BvSB) uncertainty strategy shows its superiority in most cases. We take this combination as our off-the-shelf recommendation for the MDAL problem
    corecore