17,784 research outputs found

    Improving TCP Performance by Estimating Errors in a Long Delay, High Error Rate Environment

    Get PDF
    Interest in finding methods of improving TCP performance over satellite and wireless networks is high. This has been an active area of research within the networking community. This research develops an algorithm, CETEN-R for TCP to determine if a particular packet is lost due to congestion or corruption and react accordingly. An analysis of the performance of CETEN-R under a variety of conditions is studied and then compared to TCP Reno and TCP New Reno. When delay is high and the error rate is high CETEN-R showed a 77.5% increase in goodput over TCP New Reno and a 33.8% increase in goodput over TCP Reno. When delay is low and the error rate is high, CETEN-R showed a 146% increase in goodput over TCP New Reno and a 77% increase in goodput over TCP Reno. At low error rates, CETEN-R provides no advantage over TCP Reno or TCP New Reno

    A network resource availability model for IEEE802.11a/b-based WLAN carrying different service types

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://jwcn.eurasipjournals.com/content/2011/1/103. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Operators of integrated wireless systems need to have knowledge of the resource availability in their different access networks to perform efficient admission control and maintain good quality of experience to users. Network availability depends on the access technology and the service types. Resource availability in a WLAN is complex to gather when UDP and TCP services co-exist. Previous study on IEEE802.11a/b derived the achievable throughput under the assumption of inelastic and uniformly distributed traffic. Further study investigated TCP connections and derived a model to calculate the effective transmission rate of packets under the assumption of saturated traffic flows. The assumptions are too stringent; therefore, we developed a model for evaluating WLAN resource availability that tries to narrow the gap to more realistic scenarios. It provides an indication of WLAN resource availability for admitting UDP/TCP requests. This article presents the assumptions, the mathematical formulations, and the effectiveness of our model

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan
    corecore