1,409 research outputs found
Perturbation Analysis for Robust Damage Detection with Application to Multifunctional Aircraft Structures
The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.FUI MSIE (Pole Astech
Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS
This article presents a finite element reduced order model for the nonlinear vibrations of piezoelectric layered beams with application to NEMS. In this model, the geometrical nonlinearities are taken into account through a von Kármán nonlinear strain–displacement relationship. The originality of the finite element electromechanical formulation is that the system electrical state is fully described by only a couple of variables per piezoelectric patches, namely the electric charge contained in the electrodes and the voltage between the electrodes. Due to the geometrical nonlinearity, the piezoelectric actuation introduces an original parametric excitation term in the equilibrium equation. The reduced-order formulation of the discretized problem is obtained by expanding the mechanical displacement unknown vector onto the short-circuit eigenmode basis. A particular attention is paid to the computation of the unknown nonlinear stiffness coefficients of the reduced-order model. Due to the particular form of the von Kármán nonlinearities, these coefficients are computed exactly, once for a given geometry, by prescribing relevant nodal displacements in nonlinear static solutions settings. Finally, the low-order model is computed with an original purely harmonic-based continuation method. Our numerical tool is then validated by computing the nonlinear vibrations of a mechanically excited homogeneous beam supported at both ends referenced in the literature. The more difficult case of the nonlinear oscillations of a layered nanobridge piezoelectrically actuated is also studied. Interesting vibratory phenomena such as parametric amplification or patch length dependence of the frequency output response are highlighted in order to help in the design of these nanodevices.This research is part of the NEMSPIEZO project, under funds from the French National Research Agency (Project ANR-08-NAN O-015-04), for which the authors are grateful
Displacements analysis of self-excited vibrations in turning
The actual research deals with determining by a new protocol the necessary
parameters considering a three-dimensional model to simulate in a realistic way
the turning process on machine tool. This paper is dedicated to the
experimental displacements analysis of the block tool / block workpiece with
self-excited vibrations. In connexion with turning process, the self-excited
vibrations domain is obtained starting from spectra of two accelerometers. The
existence of a displacements plane attached to the tool edge point is revealed.
This plane proves to be inclined compared to the machines tool axes. We
establish that the tool tip point describes an ellipse. This ellipse is very
small and can be considered as a small straight line segment for the stable
cutting process (without vibrations). In unstable mode (with vibrations) the
ellipse of displacements is really more visible. A difference in phase occurs
between the tool tip displacements on the radial direction and on the cutting
one. The feed motion direction and the cutting one are almost in phase. The
values of the long and small ellipse axes (and their ratio) shows that these
sizes are increasing with the feed rate value. The axis that goes through the
stiffness center and the tool tip represents the maximum stiffness direction.
The maximum (resp. minimum) stiffness axis of the tool is perpendicular to the
large (resp. small) ellipse displacements axis. FFT analysis of the
accelerometers signals allows to reach several important parameters and
establish coherent correlations between tool tip displacements and the static -
elastic characteristics of the machine tool components tested
Automated Computation of Autonomous Spectral Submanifolds for Nonlinear Modal Analysis
We discuss an automated computational methodology for computing
two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical
systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest
nonlinear continuations of modal subspaces of the linearized system, are
constructed up to arbitrary orders of accuracy, using the parameterization
method. An advantage of this approach is that the construction of the SSMs does
not break down when the SSM folds over its underlying spectral subspace. A
further advantage is an automated a posteriori error estimation feature that
enables a systematic increase in the orders of the SSM computation until the
required accuracy is reached. We find that the present algorithm provides a
major speed-up, relative to numerical continuation methods, in the computation
of backbone curves, especially in higher-dimensional problems. We illustrate
the accuracy and speed of the automated SSM algorithm on lower- and
higher-dimensional mechanical systems
Vibration
Physiological and biomechanical responses of humans to vibrations during manned space flight and threshold data on tolerances to various vibrational modes and condition
Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction
We propose a unified approach to nonlinear modal analysis in dissipative
oscillatory systems. This approach eliminates conflicting definitions, covers
both autonomous and time-dependent systems, and provides exact mathematical
existence, uniqueness and robustness results. In this setting, a nonlinear
normal mode (NNM) is a set filled with small-amplitude recurrent motions: a
fixed point, a periodic orbit or the closure of a quasiperiodic orbit. In
contrast, a spectral submanifold (SSM) is an invariant manifold asymptotic to a
NNM, serving as the smoothest nonlinear continuation of a spectral subspace of
the linearized system along the NNM. The existence and uniqueness of SSMs turns
out to depend on a spectral quotient computed from the real part of the
spectrum of the linearized system. This quotient may well be large even for
small dissipation, thus the inclusion of damping is essential for firm
conclusions about NNMs, SSMs and the reduced-order models they yield.Comment: To appear in Nonlinear Dynamic
An Assessment of the State-of-the-art in Multidisciplinary Aeromechanical Analyses
This paper presents a survey of the current state-of-the-art in multidisciplinary aeromechanical analyses which integrate advanced Computational Structural Dynamics (CSD) and Computational Fluid Dynamics (CFD) methods. The application areas to be surveyed include fixed wing aircraft, turbomachinery, and rotary wing aircraft. The objective of the authors in the present paper, together with a companion paper on requirements, is to lay out a path for a High Performance Computing (HPC) based next generation comprehensive rotorcraft analysis. From this survey of the key technologies in other application areas it is possible to identify the critical technology gaps that stem from unique rotorcraft requirements
Engineering data compendium. Human perception and performance. User's guide
The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use
Sensory Communication
Contains table of contents on Section 2, an introduction, reports on eleven research projects and a list of publications.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Grant 5 R01 DC00270National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00100National Institutes of Health Contract 7 R29 DC00428National Institutes of Health Grant 2 R01 DC00126U.S. Air Force - Office of Scientific Research Grant AFOSR 90-0200U.S. Navy - Office of Naval Research Grant N00014-90-J-1935National Institutes of Health Grant 5 R29 DC00625U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-181
- …
