16,418 research outputs found

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Online Action Detection

    Get PDF
    In online action detection, the goal is to detect the start of an action in a video stream as soon as it happens. For instance, if a child is chasing a ball, an autonomous car should recognize what is going on and respond immediately. This is a very challenging problem for four reasons. First, only partial actions are observed. Second, there is a large variability in negative data. Third, the start of the action is unknown, so it is unclear over what time window the information should be integrated. Finally, in real world data, large within-class variability exists. This problem has been addressed before, but only to some extent. Our contributions to online action detection are threefold. First, we introduce a realistic dataset composed of 27 episodes from 6 popular TV series. The dataset spans over 16 hours of footage annotated with 30 action classes, totaling 6,231 action instances. Second, we analyze and compare various baseline methods, showing this is a challenging problem for which none of the methods provides a good solution. Third, we analyze the change in performance when there is a variation in viewpoint, occlusion, truncation, etc. We introduce an evaluation protocol for fair comparison. The dataset, the baselines and the models will all be made publicly available to encourage (much needed) further research on online action detection on realistic data.Comment: Project page: http://homes.esat.kuleuven.be/~rdegeest/OnlineActionDetection.htm

    Social Justice Documentary: Designing for Impact

    Get PDF
    Explores current methodologies for assessing social issue documentary films by combining strategic design and evaluation of multiplatform outreach and impact, including documentaries' role in network- and field-building. Includes six case studies
    • …
    corecore