4,903 research outputs found

    Cross-lingual sentiment classification using semi-supervised learning

    Get PDF
    Cross-lingual sentiment classification aims to utilize annotated sentiment resources in one language for text sentiment classification in another language. Automatic machine translation services are the most commonly used tools to directly project information from one language into another. However, different term distribution between translated and original documents, translation errors and different intrinsic structure of documents in various languages are the problems that lead to low performance in sentiment classification. Furthermore, due to the existence of different linguistic terms in different languages, translated documents cannot cover all vocabularies which exist in the original documents. The aim of this thesis is to propose an enhanced framework for cross-lingual sentiment classification to overcome all the aforementioned problems in order to improve the classification performance. Combination of active learning and semi-supervised learning in both single view and bi-view frameworks is proposed to incorporate unlabelled data from the target language in order to reduce term distribution divergence. Using bi-view documents can partially alleviate the negative effects of translation errors. Multi-view semisupervised learning is also used to overcome the problem of low term-coverage through employing multiple source languages. Features that are extracted from multiple source languages can cover more vocabularies from test data and consequently, more sentimental terms can be used in the classification process. Content similarities of labelled and unlabelled documents are used through graphbased semi-supervised learning approach to incorporate the structure of documents in the target language into the learning process. Performance evaluation performed on sentiment data sets in four different languages certifies the effectiveness of the proposed approaches in comparison to the well-known baseline classification methods. The experiments show that incorporation of unlabelled data from the target language can effectively improve the classification performance. Experimental results also show that using multiple source languages in the multi-view learning model outperforms other methods. The proposed framework is flexible enough to be applied on any new language, and therefore, it can be used to develop multilingual sentiment analysis systems

    Cross-Lingual Adaptation using Structural Correspondence Learning

    Full text link
    Cross-lingual adaptation, a special case of domain adaptation, refers to the transfer of classification knowledge between two languages. In this article we describe an extension of Structural Correspondence Learning (SCL), a recently proposed algorithm for domain adaptation, for cross-lingual adaptation. The proposed method uses unlabeled documents from both languages, along with a word translation oracle, to induce cross-lingual feature correspondences. From these correspondences a cross-lingual representation is created that enables the transfer of classification knowledge from the source to the target language. The main advantages of this approach over other approaches are its resource efficiency and task specificity. We conduct experiments in the area of cross-language topic and sentiment classification involving English as source language and German, French, and Japanese as target languages. The results show a significant improvement of the proposed method over a machine translation baseline, reducing the relative error due to cross-lingual adaptation by an average of 30% (topic classification) and 59% (sentiment classification). We further report on empirical analyses that reveal insights into the use of unlabeled data, the sensitivity with respect to important hyperparameters, and the nature of the induced cross-lingual correspondences

    Transfer Learning for Multi-language Twitter Election Classification

    Get PDF
    Both politicians and citizens are increasingly embracing social media as a means to disseminate information and comment on various topics, particularly during significant political events, such as elections. Such commentary during elections is also of interest to social scientists and pollsters. To facilitate the study of social media during elections, there is a need to automatically identify posts that are topically related to those elections. However, current studies have focused on elections within English-speaking regions, and hence the resultant election content classifiers are only applicable for elections in countries where the predominant language is English. On the other hand, as social media is becoming more prevalent worldwide, there is an increasing need for election classifiers that can be generalised across different languages, without building a training dataset for each election. In this paper, based upon transfer learning, we study the development of effective and reusable election classifiers for use on social media across multiple languages. We combine transfer learning with different classifiers such as Support Vector Machines (SVM) and state-of-the-art Convolutional Neural Networks (CNN), which make use of word embedding representations for each social media post. We generalise the learned classifier models for cross-language classification by using a linear translation approach to map the word embedding vectors from one language into another. Experiments conducted over two election datasets in different languages show that without using any training data from the target language, linear translations outperform a classical transfer learning approach, namely Transfer Component Analysis (TCA), by 80% in recall and 25% in F1 measure

    Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need!

    Full text link
    Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at \url{http://github.com/UKPLab/coling2018-xling_argument_mining}.Comment: Accepted at Coling 201

    A Multiplicative Model for Learning Distributed Text-Based Attribute Representations

    Full text link
    In this paper we propose a general framework for learning distributed representations of attributes: characteristics of text whose representations can be jointly learned with word embeddings. Attributes can correspond to document indicators (to learn sentence vectors), language indicators (to learn distributed language representations), meta-data and side information (such as the age, gender and industry of a blogger) or representations of authors. We describe a third-order model where word context and attribute vectors interact multiplicatively to predict the next word in a sequence. This leads to the notion of conditional word similarity: how meanings of words change when conditioned on different attributes. We perform several experimental tasks including sentiment classification, cross-lingual document classification, and blog authorship attribution. We also qualitatively evaluate conditional word neighbours and attribute-conditioned text generation.Comment: 11 pages. An earlier version was accepted to the ICML-2014 Workshop on Knowledge-Powered Deep Learning for Text Minin

    Semantic Sentiment Analysis of Twitter Data

    Full text link
    Internet and the proliferation of smart mobile devices have changed the way information is created, shared, and spreads, e.g., microblogs such as Twitter, weblogs such as LiveJournal, social networks such as Facebook, and instant messengers such as Skype and WhatsApp are now commonly used to share thoughts and opinions about anything in the surrounding world. This has resulted in the proliferation of social media content, thus creating new opportunities to study public opinion at a scale that was never possible before. Naturally, this abundance of data has quickly attracted business and research interest from various fields including marketing, political science, and social studies, among many others, which are interested in questions like these: Do people like the new Apple Watch? Do Americans support ObamaCare? How do Scottish feel about the Brexit? Answering these questions requires studying the sentiment of opinions people express in social media, which has given rise to the fast growth of the field of sentiment analysis in social media, with Twitter being especially popular for research due to its scale, representativeness, variety of topics discussed, as well as ease of public access to its messages. Here we present an overview of work on sentiment analysis on Twitter.Comment: Microblog sentiment analysis; Twitter opinion mining; In the Encyclopedia on Social Network Analysis and Mining (ESNAM), Second edition. 201
    corecore