32 research outputs found

    Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation

    Full text link
    Image segmentation is a fundamental problem in biomedical image analysis. Recent advances in deep learning have achieved promising results on many biomedical image segmentation benchmarks. However, due to large variations in biomedical images (different modalities, image settings, objects, noise, etc), to utilize deep learning on a new application, it usually needs a new set of training data. This can incur a great deal of annotation effort and cost, because only biomedical experts can annotate effectively, and often there are too many instances in images (e.g., cells) to annotate. In this paper, we aim to address the following question: With limited effort (e.g., time) for annotation, what instances should be annotated in order to attain the best performance? We present a deep active learning framework that combines fully convolutional network (FCN) and active learning to significantly reduce annotation effort by making judicious suggestions on the most effective annotation areas. We utilize uncertainty and similarity information provided by FCN and formulate a generalized version of the maximum set cover problem to determine the most representative and uncertain areas for annotation. Extensive experiments using the 2015 MICCAI Gland Challenge dataset and a lymph node ultrasound image segmentation dataset show that, using annotation suggestions by our method, state-of-the-art segmentation performance can be achieved by using only 50% of training data.Comment: Accepted at MICCAI 201

    Uncertainty sampling for action recognition via maximizing expected average precision

    Full text link
    © 2018 International Joint Conferences on Artificial Intelligence. All right reserved. Recognizing human actions in video clips has been an important topic in computer vision. Sufficient labeled data is one of the prerequisites for the good performance of action recognition algorithms. However, while abundant videos can be collected from the Internet, categorizing each video clip is time-consuming. Active learning is one way to alleviate the labeling labor by allowing the classifier to choose the most informative unlabeled instances for manual annotation. Among various active learning algorithms, uncertainty sampling is arguably the most widely-used strategy. Conventional uncertainty sampling strategies such as entropy-based methods are usually tested under accuracy. However, in action recognition Average Precision (AP) is an acknowledged evaluation metric, which is somehow ignored in the active learning community. It is defined as the area under the precision-recall curve. In this paper, we propose a novel uncertainty sampling algorithm for action recognition using expected AP. We conduct experiments on three real-world action recognition datasets and show that our algorithm outperforms other uncertainty-based active learning algorithms

    Image Segmentation using Sparse Subset Selection

    Full text link
    In this paper, we present a new image segmentation method based on the concept of sparse subset selection. Starting with an over-segmentation, we adopt local spectral histogram features to encode the visual information of the small segments into high-dimensional vectors, called superpixel features. Then, the superpixel features are fed into a novel convex model which efficiently leverages the features to group the superpixels into a proper number of coherent regions. Our model automatically determines the optimal number of coherent regions and superpixels assignment to shape final segments. To solve our model, we propose a numerical algorithm based on the alternating direction method of multipliers (ADMM), whose iterations consist of two highly parallelizable sub-problems. We show each sub-problem enjoys closed-form solution which makes the ADMM iterations computationally very efficient. Extensive experiments on benchmark image segmentation datasets demonstrate that our proposed method in combination with an over-segmentation can provide high quality and competitive results compared to the existing state-of-the-art methods.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201
    corecore