486,874 research outputs found
Hall-Effect Sign Anomaly and Small-Polaronic Conduction in (La_{1-x}Gd_x)_{0.67}Ca_{0.33}MnO_3
The Hall coefficient of Gd-doped La_{2/3}Ca_{1/3}MnO_3 exhibits Arrhenius
behavior over a temperature range from 2T_c to 4T_c, with an activation energy
very close to 2/3 that of the electrical conductivity. Although both the doping
level and thermoelectric coefficient indicate hole-like conduction, the Hall
coefficient is electron-like. This unusual result provides strong evidence in
favor of small-polaronic conduction in the paramagnetic regime of the
manganites.Comment: 11 pages, 4 figures, uses revtex.st
Influence of magnetic viscosity on domain wall dynamics under spin-polarized currents
We present a theoretical study of the influence of magnetic viscosity on
current-driven domain wall dynamics. In particular we examine how domain wall
depinning transitions, driven by thermal activation, are influenced by the
adiabatic and nonadiabatic spin-torques. We find the Arrhenius law that
describes the transition rate for activation over a single energy barrier
remains applicable under currents but with a current-dependent barrier height.
We show that the effective energy barrier is dominated by a linear current
dependence under usual experimental conditions, with a variation that depends
only on the nonadiabatic spin torque coefficient beta.Comment: 8 pages, 4 figure
Magnetization reversal driven by spin-injection : a mesoscopic spin-transfer effect
A mesoscopic description of spin-transfer effect is proposed, based on the
spin-injection mechanism occurring at the junction with a ferromagnet. The
effect of spin-injection is to modify locally, in the ferromagnetic
configuration space, the density of magnetic moments. The corresponding
gradient leads to a current-dependent diffusion process of the magnetization.
In order to describe this effect, the dynamics of the magnetization of a
ferromagnetic single domain is reconsidered in the framework of the
thermokinetic theory of mesoscopic systems. Assuming an Onsager
cross-coefficient that couples the currents, it is shown that spin-dependent
electric transport leads to a correction of the Landau-Lifshitz-Gilbert
equation of the ferromagnetic order parameter with supplementary diffusion
terms. The consequence of spin-injection in terms of activation process of the
ferromagnet is deduced, and the expressions of the effective energy barrier and
of the critical current are derived. Magnetic fluctuations are calculated: the
correction to the fluctuations is similar to that predicted for the activation.
These predictions are consistent with the measurements of spin-transfer
obtained in the activation regime and for ferromagnetic resonance under
spin-injection.Comment: 20 pages, 2 figure
Diffusion of a liquid nanoparticle on a disordered substrate
We perform molecular dynamic simulations of liquid nanoparticles deposited on
a disordered substrate. The motion of the nanoparticle is characterised by a
'stick and roll' diffusive process. Long simulation times (),
analysis of mean square displacements and stacking time distribution functions
demonstrate that the nanoparticle undergoes a normal diffusion in spite of long
sticking times. We propose a phenomenological model for the size and
temperature dependence of the diffusion coefficient in which the activation
energy scales as .Comment: Accepted for publication in Phys. Rev.
- …
