20 research outputs found

    Actionness Ranking with Lattice Conditional Ordinal Random Fields

    Full text link
    Action analysis in image and video has been attracting more and more attention in computer vision. Recognizing specific actions in video clips has been the main focus. We move in a new, more general direction in this paper and ask the critical fundamental question: what is action, how is action different from motion, and in a given image or video where is the action? We study the philosophical and vi-sual characteristics of action, which lead us to define ac-tionness: intentional bodily movement of biological agents (people, animals). To solve the general problem, we pro-pose the lattice conditional ordinal random field model that incorporates local evidence as well as neighboring order agreement. We implement the new model in the continuous domain and apply it to scoring actionness in both image and video datasets. Our experiments demonstrate not only that our new model can outperform the popular ranking SVM but also that indeed action is distinct from motion. 1

    Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos

    Get PDF
    In this work, we propose an approach to the spatiotemporal localisation (detection) and classification of multiple concurrent actions within temporally untrimmed videos. Our framework is composed of three stages. In stage 1, appearance and motion detection networks are employed to localise and score actions from colour images and optical flow. In stage 2, the appearance network detections are boosted by combining them with the motion detection scores, in proportion to their respective spatial overlap. In stage 3, sequences of detection boxes most likely to be associated with a single action instance, called action tubes, are constructed by solving two energy maximisation problems via dynamic programming. While in the first pass, action paths spanning the whole video are built by linking detection boxes over time using their class-specific scores and their spatial overlap, in the second pass, temporal trimming is performed by ensuring label consistency for all constituting detection boxes. We demonstrate the performance of our algorithm on the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achieving new state-of-the-art results across the board and significantly increasing detection speed at test time. We achieve a huge leap forward in action detection performance and report a 20% and 11% gain in mAP (mean average precision) on UCF-101 and J-HMDB-21 datasets respectively when compared to the state-of-the-art.Comment: Accepted by British Machine Vision Conference 201

    Unsupervised Action Proposal Ranking through Proposal Recombination

    Full text link
    Recently, action proposal methods have played an important role in action recognition tasks, as they reduce the search space dramatically. Most unsupervised action proposal methods tend to generate hundreds of action proposals which include many noisy, inconsistent, and unranked action proposals, while supervised action proposal methods take advantage of predefined object detectors (e.g., human detector) to refine and score the action proposals, but they require thousands of manual annotations to train. Given the action proposals in a video, the goal of the proposed work is to generate a few better action proposals that are ranked properly. In our approach, we first divide action proposal into sub-proposal and then use Dynamic Programming based graph optimization scheme to select the optimal combinations of sub-proposals from different proposals and assign each new proposal a score. We propose a new unsupervised image-based actioness detector that leverages web images and employs it as one of the node scores in our graph formulation. Moreover, we capture motion information by estimating the number of motion contours within each action proposal patch. The proposed method is an unsupervised method that neither needs bounding box annotations nor video level labels, which is desirable with the current explosion of large-scale action datasets. Our approach is generic and does not depend on a specific action proposal method. We evaluate our approach on several publicly available trimmed and un-trimmed datasets and obtain better performance compared to several proposal ranking methods. In addition, we demonstrate that properly ranked proposals produce significantly better action detection as compared to state-of-the-art proposal based methods

    Efficient Action Detection in Untrimmed Videos via Multi-Task Learning

    Full text link
    This paper studies the joint learning of action recognition and temporal localization in long, untrimmed videos. We employ a multi-task learning framework that performs the three highly related steps of action proposal, action recognition, and action localization refinement in parallel instead of the standard sequential pipeline that performs the steps in order. We develop a novel temporal actionness regression module that estimates what proportion of a clip contains action. We use it for temporal localization but it could have other applications like video retrieval, surveillance, summarization, etc. We also introduce random shear augmentation during training to simulate viewpoint change. We evaluate our framework on three popular video benchmarks. Results demonstrate that our joint model is efficient in terms of storage and computation in that we do not need to compute and cache dense trajectory features, and that it is several times faster than its sequential ConvNets counterpart. Yet, despite being more efficient, it outperforms state-of-the-art methods with respect to accuracy.Comment: WACV 2017 camera ready, minor updates about test time efficienc

    Self-Attention Temporal Convolutional Network for Long-Term Daily Living Activity Detection

    Get PDF
    International audienceIn this paper, we address the detection of daily living activities in long-term untrimmed videos. The detection of daily living activities is challenging due to their long temporal components, low inter-class variation and high intra-class variation. To tackle these challenges, recent approaches based on Temporal Convolutional Networks (TCNs) have been proposed. Such methods can capture long-term temporal patterns using a hierarchy of temporal convolutional filters, pooling and up sampling steps. However, as one of the important features of con-volutional networks, TCNs process a local neighborhood across time which leads to inefficiency in modeling the long-range dependencies between these temporal patterns of the video. In this paper, we propose Self-Attention-Temporal Convolutional Network (SA-TCN), which is able to capture both complex activity patterns and their dependencies within long-term untrimmed videos. We evaluate our proposed model on DAily Home LIfe Activity Dataset (DAHLIA) and Breakfast datasets. Our proposed method achieves state-of-the-art performance on both DAHLIA and Breakfast dataset

    SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos

    Full text link
    In this paper, we introduce SoccerNet, a benchmark for action spotting in soccer videos. The dataset is composed of 500 complete soccer games from six main European leagues, covering three seasons from 2014 to 2017 and a total duration of 764 hours. A total of 6,637 temporal annotations are automatically parsed from online match reports at a one minute resolution for three main classes of events (Goal, Yellow/Red Card, and Substitution). As such, the dataset is easily scalable. These annotations are manually refined to a one second resolution by anchoring them at a single timestamp following well-defined soccer rules. With an average of one event every 6.9 minutes, this dataset focuses on the problem of localizing very sparse events within long videos. We define the task of spotting as finding the anchors of soccer events in a video. Making use of recent developments in the realm of generic action recognition and detection in video, we provide strong baselines for detecting soccer events. We show that our best model for classifying temporal segments of length one minute reaches a mean Average Precision (mAP) of 67.8%. For the spotting task, our baseline reaches an Average-mAP of 49.7% for tolerances δ\delta ranging from 5 to 60 seconds. Our dataset and models are available at https://silviogiancola.github.io/SoccerNet.Comment: CVPR Workshop on Computer Vision in Sports 201

    Self-Attention Temporal Convolutional Network for Long-Term Daily Living Activity Detection

    Get PDF
    International audienceIn this paper, we address the detection of daily living activities in long-term untrimmed videos. The detection of daily living activities is challenging due to their long temporal components, low inter-class variation and high intra-class variation. To tackle these challenges, recent approaches based on Temporal Convolutional Networks (TCNs) have been proposed. Such methods can capture long-term temporal patterns using a hierarchy of temporal convolutional filters, pooling and up sampling steps. However, as one of the important features of con-volutional networks, TCNs process a local neighborhood across time which leads to inefficiency in modeling the long-range dependencies between these temporal patterns of the video. In this paper, we propose Self-Attention-Temporal Convolutional Network (SA-TCN), which is able to capture both complex activity patterns and their dependencies within long-term untrimmed videos. We evaluate our proposed model on DAily Home LIfe Activity Dataset (DAHLIA) and Breakfast datasets. Our proposed method achieves state-of-the-art performance on both DAHLIA and Breakfast dataset
    corecore