59 research outputs found

    Act-VIT: A Representationally Robust Attention Architecture for Skeleton Based Action Recognition Using Vision Transformer

    Full text link
    Skeleton-based action recognition receives the attention of many researchers as it is robust to viewpoint and illumination changes, and its processing is much more efficient than video frames. With the emergence of deep learning models, it has become very popular to represent the skeleton data in pseudo-image form and apply Convolutional Neural Networks for action recognition. Thereafter, studies concentrated on finding effective methods for forming pseudo-images. Recently, attention networks, more specifically transformers have provided promising results in various vision problems. In this study, the effectiveness of vision transformers for skeleton-based action recognition is examined and its robustness on the pseudo-image representation scheme is investigated. To this end, a three-level architecture, Act-VIT is proposed, which forms a set of pseudo images apply a classifier on each of the representation and combine their results to find the final action class. The classifiers of Act-VIT are first realized by CNNs and then by VITs and their performances are compared. Experimental studies reveal that the vision transformer is less sensitive to the initial pseudo-image representation compared to CNN. Nevertheless, even with the vision transformer, the recognition performance can be further improved by consensus of classifiers

    Recognition and 3D Localization of Pedestrian Actions from Monocular Video

    Full text link
    Understanding and predicting pedestrian behavior is an important and challenging area of research for realizing safe and effective navigation strategies in automated and advanced driver assistance technologies in urban scenes. This paper focuses on monocular pedestrian action recognition and 3D localization from an egocentric view for the purpose of predicting intention and forecasting future trajectory. A challenge in addressing this problem in urban traffic scenes is attributed to the unpredictable behavior of pedestrians, whereby actions and intentions are constantly in flux and depend on the pedestrians pose, their 3D spatial relations, and their interaction with other agents as well as with the environment. To partially address these challenges, we consider the importance of pose toward recognition and 3D localization of pedestrian actions. In particular, we propose an action recognition framework using a two-stream temporal relation network with inputs corresponding to the raw RGB image sequence of the tracked pedestrian as well as the pedestrian pose. The proposed method outperforms methods using a single-stream temporal relation network based on evaluations using the JAAD public dataset. The estimated pose and associated body key-points are also used as input to a network that estimates the 3D location of the pedestrian using a unique loss function. The evaluation of our 3D localization method on the KITTI dataset indicates the improvement of the average localization error as compared to existing state-of-the-art methods. Finally, we conduct qualitative tests of action recognition and 3D localization on HRI's H3D driving dataset

    DeepHuMS: Deep Human Motion Signature for 3D Skeletal Sequences

    Full text link
    3D Human Motion Indexing and Retrieval is an interesting problem due to the rise of several data-driven applications aimed at analyzing and/or re-utilizing 3D human skeletal data, such as data-driven animation, analysis of sports bio-mechanics, human surveillance etc. Spatio-temporal articulations of humans, noisy/missing data, different speeds of the same motion etc. make it challenging and several of the existing state of the art methods use hand-craft features along with optimization based or histogram based comparison in order to perform retrieval. Further, they demonstrate it only for very small datasets and few classes. We make a case for using a learned representation that should recognize the motion as well as enforce a discriminative ranking. To that end, we propose, a 3D human motion descriptor learned using a deep network. Our learned embedding is generalizable and applicable to real-world data - addressing the aforementioned challenges and further enables sub-motion searching in its embedding space using another network. Our model exploits the inter-class similarity using trajectory cues, and performs far superior in a self-supervised setting. State of the art results on all these fronts is shown on two large scale 3D human motion datasets - NTU RGB+D and HDM05.Comment: Under Review, Conferenc
    • …
    corecore