82,398 research outputs found

    Ridiculously Fast Shot Boundary Detection with Fully Convolutional Neural Networks

    Full text link
    Shot boundary detection (SBD) is an important component of many video analysis tasks, such as action recognition, video indexing, summarization and editing. Previous work typically used a combination of low-level features like color histograms, in conjunction with simple models such as SVMs. Instead, we propose to learn shot detection end-to-end, from pixels to final shot boundaries. For training such a model, we rely on our insight that all shot boundaries are generated. Thus, we create a dataset with one million frames and automatically generated transitions such as cuts, dissolves and fades. In order to efficiently analyze hours of videos, we propose a Convolutional Neural Network (CNN) which is fully convolutional in time, thus allowing to use a large temporal context without the need to repeatedly processing frames. With this architecture our method obtains state-of-the-art results while running at an unprecedented speed of more than 120x real-time

    Single Shot Temporal Action Detection

    Full text link
    Temporal action detection is a very important yet challenging problem, since videos in real applications are usually long, untrimmed and contain multiple action instances. This problem requires not only recognizing action categories but also detecting start time and end time of each action instance. Many state-of-the-art methods adopt the "detection by classification" framework: first do proposal, and then classify proposals. The main drawback of this framework is that the boundaries of action instance proposals have been fixed during the classification step. To address this issue, we propose a novel Single Shot Action Detector (SSAD) network based on 1D temporal convolutional layers to skip the proposal generation step via directly detecting action instances in untrimmed video. On pursuit of designing a particular SSAD network that can work effectively for temporal action detection, we empirically search for the best network architecture of SSAD due to lacking existing models that can be directly adopted. Moreover, we investigate into input feature types and fusion strategies to further improve detection accuracy. We conduct extensive experiments on two challenging datasets: THUMOS 2014 and MEXaction2. When setting Intersection-over-Union threshold to 0.5 during evaluation, SSAD significantly outperforms other state-of-the-art systems by increasing mAP from 19.0% to 24.6% on THUMOS 2014 and from 7.4% to 11.0% on MEXaction2.Comment: ACM Multimedia 201

    Temporal Action Localization with Enhanced Instant Discriminability

    Full text link
    Temporal action detection (TAD) aims to detect all action boundaries and their corresponding categories in an untrimmed video. The unclear boundaries of actions in videos often result in imprecise predictions of action boundaries by existing methods. To resolve this issue, we propose a one-stage framework named TriDet. First, we propose a Trident-head to model the action boundary via an estimated relative probability distribution around the boundary. Then, we analyze the rank-loss problem (i.e. instant discriminability deterioration) in transformer-based methods and propose an efficient scalable-granularity perception (SGP) layer to mitigate this issue. To further push the limit of instant discriminability in the video backbone, we leverage the strong representation capability of pretrained large models and investigate their performance on TAD. Last, considering the adequate spatial-temporal context for classification, we design a decoupled feature pyramid network with separate feature pyramids to incorporate rich spatial context from the large model for localization. Experimental results demonstrate the robustness of TriDet and its state-of-the-art performance on multiple TAD datasets, including hierarchical (multilabel) TAD datasets.Comment: An extended version of the CVPR paper arXiv:2303.07347, submitted to IJC
    • …
    corecore