10 research outputs found

    Action recognition with spatial-temporal discriminative filter banks

    Full text link
    Action recognition has seen a dramatic performance improvement in the last few years. Most of the current state-of-the-art literature either aims at improving performance through changes to the backbone CNN network, or they explore different trade-offs between computational efficiency and performance, again through altering the backbone network. However, almost all of these works maintain the same last layers of the network, which simply consist of a global average pooling followed by a fully connected layer. In this work we focus on how to improve the representation capacity of the network, but rather than altering the backbone, we focus on improving the last layers of the network, where changes have low impact in terms of computational cost. In particular, we show that current architectures have poor sensitivity to finer details and we exploit recent advances in the fine-grained recognition literature to improve our model in this aspect. With the proposed approach, we obtain state-of-the-art performance on Kinetics-400 and Something-Something-V1, the two major large-scale action recognition benchmarks.Comment: ICCV 2019 Accepted Pape

    Improving Skeleton-based Action Recognitionwith Robust Spatial and Temporal Features

    Full text link
    Recently skeleton-based action recognition has made signif-icant progresses in the computer vision community. Most state-of-the-art algorithms are based on Graph Convolutional Networks (GCN), andtarget at improving the network structure of the backbone GCN lay-ers. In this paper, we propose a novel mechanism to learn more robustdiscriminative features in space and time. More specifically, we add aDiscriminative Feature Learning (DFL) branch to the last layers of thenetwork to extract discriminative spatial and temporal features to helpregularize the learning. We also formally advocate the use of Direction-Invariant Features (DIF) as input to the neural networks. We show thataction recognition accuracy can be improved when these robust featuresare learned and used. We compare our results with those of ST-GCNand related methods on four datasets: NTU-RGBD60, NTU-RGBD120,SYSU 3DHOI and Skeleton-Kinetics

    Directional Temporal Modeling for Action Recognition

    Full text link
    Many current activity recognition models use 3D convolutional neural networks (e.g. I3D, I3D-NL) to generate local spatial-temporal features. However, such features do not encode clip-level ordered temporal information. In this paper, we introduce a channel independent directional convolution (CIDC) operation, which learns to model the temporal evolution among local features. By applying multiple CIDC units we construct a light-weight network that models the clip-level temporal evolution across multiple spatial scales. Our CIDC network can be attached to any activity recognition backbone network. We evaluate our method on four popular activity recognition datasets and consistently improve upon state-of-the-art techniques. We further visualize the activation map of our CIDC network and show that it is able to focus on more meaningful, action related parts of the frame.Comment: ECCV 202

    t-EVA: Time-Efficient t-SNE Video Annotation

    Full text link
    Video understanding has received more attention in the past few years due to the availability of several large-scale video datasets. However, annotating large-scale video datasets are cost-intensive. In this work, we propose a time-efficient video annotation method using spatio-temporal feature similarity and t-SNE dimensionality reduction to speed up the annotation process massively. Placing the same actions from different videos near each other in the two-dimensional space based on feature similarity helps the annotator to group-label video clips. We evaluate our method on two subsets of the ActivityNet (v1.3) and a subset of the Sports-1M dataset. We show that t-EVA can outperform other video annotation tools while maintaining test accuracy on video classification.Comment: ICPR 2020 (HCAU

    Online Learnable Keyframe Extraction in Videos and its Application with Semantic Word Vector in Action Recognition

    Full text link
    Video processing has become a popular research direction in computer vision due to its various applications such as video summarization, action recognition, etc. Recently, deep learning-based methods have achieved impressive results in action recognition. However, these methods need to process a full video sequence to recognize the action, even though most of these frames are similar and non-essential to recognizing a particular action. Additionally, these non-essential frames increase the computational cost and can confuse a method in action recognition. Instead, the important frames called keyframes not only are helpful in the recognition of an action but also can reduce the processing time of each video sequence for classification or in other applications, e.g. summarization. As well, current methods in video processing have not yet been demonstrated in an online fashion. Motivated by the above, we propose an online learnable module for keyframe extraction. This module can be used to select key-shots in video and thus can be applied to video summarization. The extracted keyframes can be used as input to any deep learning-based classification model to recognize action. We also propose a plugin module to use the semantic word vector as input along with keyframes and a novel train/test strategy for the classification models. To our best knowledge, this is the first time such an online module and train/test strategy have been proposed. The experimental results on many commonly used datasets in video summarization and in action recognition have shown impressive results using the proposed module

    Knowing What, Where and When to Look: Efficient Video Action Modeling with Attention

    Full text link
    Attentive video modeling is essential for action recognition in unconstrained videos due to their rich yet redundant information over space and time. However, introducing attention in a deep neural network for action recognition is challenging for two reasons. First, an effective attention module needs to learn what (objects and their local motion patterns), where (spatially), and when (temporally) to focus on. Second, a video attention module must be efficient because existing action recognition models already suffer from high computational cost. To address both challenges, a novel What-Where-When (W3) video attention module is proposed. Departing from existing alternatives, our W3 module models all three facets of video attention jointly. Crucially, it is extremely efficient by factorizing the high-dimensional video feature data into low-dimensional meaningful spaces (1D channel vector for `what' and 2D spatial tensors for `where'), followed by lightweight temporal attention reasoning. Extensive experiments show that our attention model brings significant improvements to existing action recognition models, achieving new state-of-the-art performance on a number of benchmarks

    Gate-Shift Networks for Video Action Recognition

    Full text link
    Deep 3D CNNs for video action recognition are designed to learn powerful representations in the joint spatio-temporal feature space. In practice however, because of the large number of parameters and computations involved, they may under-perform in the lack of sufficiently large datasets for training them at scale. In this paper we introduce spatial gating in spatial-temporal decomposition of 3D kernels. We implement this concept with Gate-Shift Module (GSM). GSM is lightweight and turns a 2D-CNN into a highly efficient spatio-temporal feature extractor. With GSM plugged in, a 2D-CNN learns to adaptively route features through time and combine them, at almost no additional parameters and computational overhead. We perform an extensive evaluation of the proposed module to study its effectiveness in video action recognition, achieving state-of-the-art results on Something Something-V1 and Diving48 datasets, and obtaining competitive results on EPIC-Kitchens with far less model complexity.Comment: CVPR20 camera ready version. Code and models available at https://github.com/swathikirans/GS

    Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters

    Full text link
    Convolutional neural networks (CNNs) have been successfully used in a range of tasks. However, CNNs are often viewed as "black-box" and lack of interpretability. One main reason is due to the filter-class entanglement -- an intricate many-to-many correspondence between filters and classes. Most existing works attempt post-hoc interpretation on a pre-trained model, while neglecting to reduce the entanglement underlying the model. In contrast, we focus on alleviating filter-class entanglement during training. Inspired by cellular differentiation, we propose a novel strategy to train interpretable CNNs by encouraging class-specific filters, among which each filter responds to only one (or few) class. Concretely, we design a learnable sparse Class-Specific Gate (CSG) structure to assign each filter with one (or few) class in a flexible way. The gate allows a filter's activation to pass only when the input samples come from the specific class. Extensive experiments demonstrate the fabulous performance of our method in generating a sparse and highly class-related representation of the input, which leads to stronger interpretability. Moreover, comparing with the standard training strategy, our model displays benefits in applications like object localization and adversarial sample detection. Code link: https://github.com/hyliang96/CSGCNN.Comment: European Conference on Computer Vision (ECCV), 202

    Universal-to-Specific Framework for Complex Action Recognition

    Full text link
    Video-based action recognition has recently attracted much attention in the field of computer vision. To solve more complex recognition tasks, it has become necessary to distinguish different levels of interclass variations. Inspired by a common flowchart based on the human decision-making process that first narrows down the probable classes and then applies a "rethinking" process for finer-level recognition, we propose an effective universal-to-specific (U2S) framework for complex action recognition. The U2S framework is composed of three subnetworks: a universal network, a category-specific network, and a mask network. The universal network first learns universal feature representations. The mask network then generates attention masks for confusing classes through category regularization based on the output of the universal network. The mask is further used to guide the category-specific network for class-specific feature representations. The entire framework is optimized in an end-to-end manner. Experiments on a variety of benchmark datasets, e.g., the Something-Something, UCF101, and HMDB51 datasets, demonstrate the effectiveness of the U2S framework; i.e., U2S can focus on discriminative spatiotemporal regions for confusing categories. We further visualize the relationship between different classes, showing that U2S indeed improves the discriminability of learned features. Moreover, the proposed U2S model is a general framework and may adopt any base recognition network.Comment: 13 pages, 8 figure

    Recent Progress in Appearance-based Action Recognition

    Full text link
    Action recognition, which is formulated as a task to identify various human actions in a video, has attracted increasing interest from computer vision researchers due to its importance in various applications. Recently, appearance-based methods have achieved promising progress towards accurate action recognition. In general, these methods mainly fulfill the task by applying various schemes to model spatial and temporal visual information effectively. To better understand the current progress of appearance-based action recognition, we provide a comprehensive review of recent achievements in this area. In particular, we summarise and discuss several dozens of related research papers, which can be roughly divided into four categories according to different appearance modelling strategies. The obtained categories include 2D convolutional methods, 3D convolutional methods, motion representation-based methods, and context representation-based methods. We analyse and discuss representative methods from each category, comprehensively. Empirical results are also summarised to better illustrate cutting-edge algorithms. We conclude by identifying important areas for future research gleaned from our categorisation
    corecore