4,654,018 research outputs found
Comparative Study of full QCD Hadron Spectrum and Static Quark Potential with Improved Actions
We investigate effects of action improvement on the light hadron spectrum and
the static quark potential in two-flavor QCD for GeV and
. We compare a renormalization group improved action with
the plaquette action for gluons, and the SW-clover action with the Wilson
action for quarks. We find a significant improvement in the hadron spectrum by
improving the quark action, while the gluon improvement is crucial for a
rotationally invariant static potential. We also explore the region of light
quark masses corresponding to on a 2.7 fm lattice using
the improved gauge and quark action. A flattening of the potential is not
observed up to 2 fm.Comment: LaTeX, 35 pages, 22 eps figures, uses revtex and eps
QCD Effective action at high temperature and small chemical potential
We present a construction of an effective Yang-Mills action for QCD, from the
expansion of the fermionic determinant in terms of powers of the chemical
potential at high temperature, for the case of massless quarks. We analyze this
expansion in the perturbative region and find that it gives extra spurious
information. We propose for the non-perturbative sector a simplified effective
action which, in principle, contains only the relevant information.Comment: 3 pages. To appear in the proceedings of the 7th Conference on Strong
& Electroweak Matter (SEWM06), BNL, May 200
Solitary electromechanical pulses in Lobster neurons
Investigations of nerve activity have focused predominantly on electrical
phenomena. Nerves, however, are thermodynamic systems, and changes in
temperature and in the dimensions of the nerve can also be observed during the
action potential. Measurements of heat changes during the action potential
suggest that the nerve pulse shares many characteristics with an adiabatic
pulse. First experiments in the 1980s suggested small changes in nerve
thickness and length during the action potential. Such findings have led to the
suggestion that the action potential may be related to electromechanical
solitons traveling without dissipation. However, they have been no modern
attempts to study mechanical phenomena in nerves. Here, we present
ultrasensitive AFM recordings of mechanical changes on the order of 2 - 12
{\AA} in the giant axons of the lobster. We show that the nerve thickness
changes in phase with voltage change. When stimulated at opposite ends of the
same axon, colliding action potentials pass through one another and do not
annihilate. These observations are consistent with a mechanical interpretation
of the nervous impulse.Comment: 9 pages, 4 figure
- …
