4,885 research outputs found

    An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams

    Full text link
    Existing FNNs are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be automatically extracted from data streams or removed if they play limited role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely gClass, drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of dimensionality of input space due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using seven datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four popular continual learning algorithms and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy. Moreover, it is also shown that the concept drift detection method is an effective tool to control the depth of network structure while the hidden layer merging scenario is capable of simplifying the network complexity of a deep network with negligible compromise of generalization performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System

    Interaction and Experience in Enactive Intelligence and Humanoid Robotics

    Get PDF
    We overview how sensorimotor experience can be operationalized for interaction scenarios in which humanoid robots acquire skills and linguistic behaviours via enacting a “form-of-life”’ in interaction games (following Wittgenstein) with humans. The enactive paradigm is introduced which provides a powerful framework for the construction of complex adaptive systems, based on interaction, habit, and experience. Enactive cognitive architectures (following insights of Varela, Thompson and Rosch) that we have developed support social learning and robot ontogeny by harnessing information-theoretic methods and raw uninterpreted sensorimotor experience to scaffold the acquisition of behaviours. The success criterion here is validation by the robot engaging in ongoing human-robot interaction with naive participants who, over the course of iterated interactions, shape the robot’s behavioural and linguistic development. Engagement in such interaction exhibiting aspects of purposeful, habitual recurring structure evidences the developed capability of the humanoid to enact language and interaction games as a successful participant

    Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective

    Full text link
    The recent developments in soft computing cannot be complete without noting the contributions of artificial neural machine learning systems that draw inspiration from real cortical tissue or processes that occur in human brain. The universal approximability of such neural systems has led to its wide spread use, and novel developments in this evolving technology has shown that there is a bright future for such Artificial Intelligent (AI) techniques in the soft computing field. Indeed, the proliferation of large and very deep networks of artificial neural systems and the corresponding enhancement and development of neural machine learning algorithms have contributed immensely to the development of the modern field of Deep Learning as may be found in the well documented research works of Lecun, Bengio and Hinton. However, the key requirements of end user affordability in addition to reduced complexity and reduced data learning size requirement means there still remains a need for the synthesis of more cost-efficient and less data-hungry artificial neural systems. In this report, we present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI) as a predictor detailing its functional and structural details, important aspects on right applicability, some recent application use cases and future research directions for current and prospective machine learning experts and data scientists.Comment: Journal submission in progres

    Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis

    Full text link
    Building general-purpose robots that can operate seamlessly, in any environment, with any object, and utilizing various skills to complete diverse tasks has been a long-standing goal in Artificial Intelligence. Unfortunately, however, most existing robotic systems have been constrained - having been designed for specific tasks, trained on specific datasets, and deployed within specific environments. These systems usually require extensively-labeled data, rely on task-specific models, have numerous generalization issues when deployed in real-world scenarios, and struggle to remain robust to distribution shifts. Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models (i.e., foundation models) in research fields such as Natural Language Processing (NLP) and Computer Vision (CV), we devote this survey to exploring (i) how these existing foundation models from NLP and CV can be applied to the field of robotics, and also exploring (ii) what a robotics-specific foundation model would look like. We begin by providing an overview of what constitutes a conventional robotic system and the fundamental barriers to making it universally applicable. Next, we establish a taxonomy to discuss current work exploring ways to leverage existing foundation models for robotics and develop ones catered to robotics. Finally, we discuss key challenges and promising future directions in using foundation models for enabling general-purpose robotic systems. We encourage readers to view our living GitHub repository of resources, including papers reviewed in this survey as well as related projects and repositories for developing foundation models for robotics

    If deep learning is the answer, then what is the question?

    Full text link
    Neuroscience research is undergoing a minor revolution. Recent advances in machine learning and artificial intelligence (AI) research have opened up new ways of thinking about neural computation. Many researchers are excited by the possibility that deep neural networks may offer theories of perception, cognition and action for biological brains. This perspective has the potential to radically reshape our approach to understanding neural systems, because the computations performed by deep networks are learned from experience, not endowed by the researcher. If so, how can neuroscientists use deep networks to model and understand biological brains? What is the outlook for neuroscientists who seek to characterise computations or neural codes, or who wish to understand perception, attention, memory, and executive functions? In this Perspective, our goal is to offer a roadmap for systems neuroscience research in the age of deep learning. We discuss the conceptual and methodological challenges of comparing behaviour, learning dynamics, and neural representation in artificial and biological systems. We highlight new research questions that have emerged for neuroscience as a direct consequence of recent advances in machine learning.Comment: 4 Figures, 17 Page

    Explainable Lifelong Stream Learning Based on "Glocal" Pairwise Fusion

    Full text link
    Real-time on-device continual learning applications are used on mobile phones, consumer robots, and smart appliances. Such devices have limited processing and memory storage capabilities, whereas continual learning acquires data over a long period of time. By necessity, lifelong learning algorithms have to be able to operate under such constraints while delivering good performance. This study presents the Explainable Lifelong Learning (ExLL) model, which incorporates several important traits: 1) learning to learn, in a single pass, from streaming data with scarce examples and resources; 2) a self-organizing prototype-based architecture that expands as needed and clusters streaming data into separable groups by similarity and preserves data against catastrophic forgetting; 3) an interpretable architecture to convert the clusters into explainable IF-THEN rules as well as to justify model predictions in terms of what is similar and dissimilar to the inference; and 4) inferences at the global and local level using a pairwise decision fusion process to enhance the accuracy of the inference, hence ``Glocal Pairwise Fusion.'' We compare ExLL against contemporary online learning algorithms for image recognition, using OpenLoris, F-SIOL-310, and Places datasets to evaluate several continual learning scenarios for video streams, low-sample learning, ability to scale, and imbalanced data streams. The algorithms are evaluated for their performance in accuracy, number of parameters, and experiment runtime requirements. ExLL outperforms all algorithms for accuracy in the majority of the tested scenarios.Comment: 24 pages, 8 figure

    From focused thought to reveries: A memory system for a conscious robot

    Full text link
    © 2018 Balkenius, Tjøstheim, Johansson and Gärdenfors. We introduce a memory model for robots that can account for many aspects of an inner world, ranging from object permanence, episodic memory, and planning to imagination and reveries. It is modeled after neurophysiological data and includes parts of the cerebral cortex together with models of arousal systems that are relevant for consciousness. The three central components are an identification network, a localization network, and a working memory network. Attention serves as the interface between the inner and the external world. It directs the flow of information from sensory organs to memory, as well as controlling top-down influences on perception. It also compares external sensations to internal top-down expectations. The model is tested in a number of computer simulations that illustrate how it can operate as a component in various cognitive tasks including perception, the A-not-B test, delayed matching to sample, episodic recall, and vicarious trial and error
    corecore