48,326 research outputs found

    Excitation Backprop for RNNs

    Full text link
    Deep models are state-of-the-art for many vision tasks including video action recognition and video captioning. Models are trained to caption or classify activity in videos, but little is known about the evidence used to make such decisions. Grounding decisions made by deep networks has been studied in spatial visual content, giving more insight into model predictions for images. However, such studies are relatively lacking for models of spatiotemporal visual content - videos. In this work, we devise a formulation that simultaneously grounds evidence in space and time, in a single pass, using top-down saliency. We visualize the spatiotemporal cues that contribute to a deep model's classification/captioning output using the model's internal representation. Based on these spatiotemporal cues, we are able to localize segments within a video that correspond with a specific action, or phrase from a caption, without explicitly optimizing/training for these tasks.Comment: CVPR 2018 Camera Ready Versio

    Local and Global Explanations of Agent Behavior: Integrating Strategy Summaries with Saliency Maps

    Get PDF
    With advances in reinforcement learning (RL), agents are now being developed in high-stakes application domains such as healthcare and transportation. Explaining the behavior of these agents is challenging, as the environments in which they act have large state spaces, and their decision-making can be affected by delayed rewards, making it difficult to analyze their behavior. To address this problem, several approaches have been developed. Some approaches attempt to convey the global\textit{global} behavior of the agent, describing the actions it takes in different states. Other approaches devised local\textit{local} explanations which provide information regarding the agent's decision-making in a particular state. In this paper, we combine global and local explanation methods, and evaluate their joint and separate contributions, providing (to the best of our knowledge) the first user study of combined local and global explanations for RL agents. Specifically, we augment strategy summaries that extract important trajectories of states from simulations of the agent with saliency maps which show what information the agent attends to. Our results show that the choice of what states to include in the summary (global information) strongly affects people's understanding of agents: participants shown summaries that included important states significantly outperformed participants who were presented with agent behavior in a randomly set of chosen world-states. We find mixed results with respect to augmenting demonstrations with saliency maps (local information), as the addition of saliency maps did not significantly improve performance in most cases. However, we do find some evidence that saliency maps can help users better understand what information the agent relies on in its decision making, suggesting avenues for future work that can further improve explanations of RL agents

    Temporal Localization of Fine-Grained Actions in Videos by Domain Transfer from Web Images

    Full text link
    We address the problem of fine-grained action localization from temporally untrimmed web videos. We assume that only weak video-level annotations are available for training. The goal is to use these weak labels to identify temporal segments corresponding to the actions, and learn models that generalize to unconstrained web videos. We find that web images queried by action names serve as well-localized highlights for many actions, but are noisily labeled. To solve this problem, we propose a simple yet effective method that takes weak video labels and noisy image labels as input, and generates localized action frames as output. This is achieved by cross-domain transfer between video frames and web images, using pre-trained deep convolutional neural networks. We then use the localized action frames to train action recognition models with long short-term memory networks. We collect a fine-grained sports action data set FGA-240 of more than 130,000 YouTube videos. It has 240 fine-grained actions under 85 sports activities. Convincing results are shown on the FGA-240 data set, as well as the THUMOS 2014 localization data set with untrimmed training videos.Comment: Camera ready version for ACM Multimedia 201
    • …
    corecore