3,671 research outputs found

    Novel wireless modulation technique based on noise

    Get PDF
    In this paper, a new RF modulation technique is presented. Instead of using sinusoidal carriers as information bearer, pure noise is applied. This allows very simple radio architectures to be used. Spread-spectrum based technology is applied to modulate the noise bearer. Since the transmission bandwidth of the noise bearer can be made very wide, up to ultra-wideband regions, extremely large processing gains can be obtained. This will provide robustness in interference-prone environments. To avoid the local regeneration of the noise reference at the receiver, the Transmit-Reference (TR) concept is applied. In this concept, both the reference noise signal and the modulated noise signal are transmitted, together forming\ud the bearer. The reference and modulated signals are separated by applying a time offset. By applying different delay times for different channels (users) a new multiple access scheme results based on delay: Delay Division Multiple Access (DDMA). A theoretical analysis is given for the link performance of a single-user and a multi-user system. A testbed has been built to demonstrate the concept. The demonstrator operates in a 50 MHz bandwidth centered at 2.4 GHz. Processing gains ranging from 10Âż30 dB have been tested. The testbed confirms the basic behavior as predicted by the theory

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    Fine Synchronization in UWB Ad-Hoc Environments

    Get PDF

    UWB communication systems acquisition at symbol rate sampling for IEEE standard channel models

    Get PDF
    For ultra-wideband (UWB) communications, acquisition is challenging. The reason is from the ultra short pulse shape and ultra dense multipath interference. Ultra short pulse indicates the acquisition region is very narrow. Sampling is another challenge for UWB design due to the need for ultra high speed analog-to digital converter.A sub-optimum and under-sampling scheme using pilot codes as transmitted reference is proposed here for acquisition. The sampling rate for the receiver is at the symbol rate. A new architecture, the reference aided matched filter is studied in this project. The reference aided matched filter method avoids using complex rake receiver to estimate channel parameters and high sampling rate for interpolation. A limited number of matched filters are used as a filter bank to search for the strongest path. Timing offset for acquisition is then estimated and passed to an advanced verification algorithm. For optimum performance of acquisition, the adaptive post detection integration is proposed to solve the problem from dense inter-symbol interference during the acquisition. A low-complex early-late gate tracking loop is one element of the adaptive post detection integration. This tracking scheme assists in improving acquisition accuracy. The proposed scheme is evaluated using Matlab Simulink simulations in term of mean acquisition time, system performance and false alarm. Simulation results show proposed algorithm is very effective in ultra dense multipath channels. This research proves reference aided acquisition with tracking loop is promising in UWB application

    Performance of Bit Error Rate and Power Spectral Density of Ultra Wideband with Time Hopping Sequences.

    Get PDF
    This thesis focuses on several modulation methods for an ultra wideband (UWB) signal. These methods are pulse position modulation (PPM), binary phase shift keying (BPSK), on/off key shifting (OOK), and pulse amplitude modulation (PAM). In addition, time hopping is considered for these modulation schemes, where the capacity per time frame of time hopping PPM is studied using different spreading ratios. This thesis proves that with the addition of time hopping to all types of modulated UWB signals, the performance of power spectral density improves in all aspects, despite the increase of data per time frame. Note that despite the increase of data per frame, the bit error rate remains the same as standard non-time hopping UWB modulated signals

    Investigation of an ultra wideband noise sensor for health monitoring

    Get PDF
    Quick on-scene assessment and early intervention is the key to reduce the mortality of stroke and trauma patients, and it is highly desirable to develop ambulance-based diagnostic and monitoring devices in order to provide additional support to the medical personnel. We developed a compact and low cost ultra wideband noise sensor for medical diagnostics and vital sign monitoring in pre-hospital settings. In this work, we demonstrated the functionality of the sensor for respiration and heartbeat monitoring. In the test, metronome was used to manipulate the breathing pattern and the heartbeat rate reference was obtained with a commercial electrocardiogram (ECG) device. With seventeen tests performed for respiration rate detection, sixteen of them were successfully detected. The results also show that it is possible to detect the heartbeat rate accurately with the developed sensor
    • …
    corecore