3 research outputs found

    Colour consistency in computer vision : a multiple image dynamic exposure colour classification system : a thesis presented to the Institute of Natural and Mathematical Sciences in fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Albany, Auckland, New Zealand

    Get PDF
    Colour classification vision systems face difficulty when a scene contains both very bright and dark regions. An indistinguishable colour at one exposure may be distinguishable at another. The use of multiple cameras with varying levels of sensitivity is explored in this thesis, aiding the classification of colours in scenes with high illumination ranges. Titled the Multiple Image Dynamic Exposure Colour Classification (MIDECC) System, pie-slice classifiers are optimised for normalised red/green and cyan/magenta colour spaces. The MIDECC system finds a limited section of hyperspace for each classifier, resulting in a process which requires minimal manual input with the ability to filter background samples without specialised training. In experimental implementation, automatic multiple-camera exposure, data sampling, training and colour space evaluation to recognise 8 target colours across 14 different lighting scenarios is processed in approximately 30 seconds. The system provides computationally effective training and classification, outputting an overall true positive score of 92.4% with an illumination range between bright and dim regions of 880 lux. False positive classifications are minimised to 4.24%, assisted by heuristic background filtering. The limited search space classifiers and layout of the colour spaces ensures the MIDECC system is less likely to classify dissimilar colours, requiring a certain ‘confidence’ level before a match is outputted. Unfortunately the system struggles to classify colours under extremely bright illumination due to the simplistic classification building technique. Results are compared to the common machine learning algorithms Naïve Bayes, Neural Networks, Random Tree and C4.5 Tree Classifiers. These algorithms return greater than 98.5% true positives and less than 1.53% false positives, with Random Tree and Naïve Bayes providing the best and worst comparable algorithms, respectively. Although resulting in a lower classification rate, the MIDECC system trains with minimal user input, ignores background and untrained samples when classifying and trains faster than most of the studied machine learning algorithms.Colour classification vision systems face difficulty when a scene contains both very bright and dark regions. An indistinguishable colour at one exposure may be distinguishable at another. The use of multiple cameras with varying levels of sensitivity is explored in this thesis, aiding the classification of colours in scenes with high illumination ranges. Titled the Multiple Image Dynamic Exposure Colour Classification (MIDECC) System, pie-slice classifiers are optimised for normalised red/green and cyan/magenta colour spaces. The MIDECC system finds a limited section of hyperspace for each classifier, resulting in a process which requires minimal manual input with the ability to filter background samples without specialised training. In experimental implementation, automatic multiple-camera exposure, data sampling, training and colour space evaluation to recognise 8 target colours across 14 different lighting scenarios is processed in approximately 30 seconds. The system provides computationally effective training and classification, outputting an overall true positive score of 92.4% with an illumination range between bright and dim regions of 880 lux. False positive classifications are minimised to 4.24%, assisted by heuristic background filtering. The limited search space classifiers and layout of the colour spaces ensures the MIDECC system is less likely to classify dissimilar colours, requiring a certain ‘confidence’ level before a match is outputted. Unfortunately the system struggles to classify colours under extremely bright illumination due to the simplistic classification building technique. Results are compared to the common machine learning algorithms Naïve Bayes, Neural Networks, Random Tree and C4.5 Tree Classifiers. These algorithms return greater than 98.5% true positives and less than 1.53% false positives, with Random Tree and Naïve Bayes providing the best and worst comparable algorithms, respectively. Although resulting in a lower classification rate, the MIDECC system trains with minimal user input, ignores background and untrained samples when classifying and trains faster than most of the studied machine learning algorithms

    Métodos de visión por computador para detección automática de líneas de cultivo curvas/rectas y malas hierbas en campos de maíz

    Get PDF
    Cada día es mayor el uso de sistemas de visión por computador a bordo de vehículos autónomos para agricultura de precisión y su utilización en distintas tareas, demandando una atención especial. La discriminación entre cultivo y malas hierbas así como la identificación de las líneas de cultivo en imágenes obtenidas en campos de maíz (cultivo de surcos anchos) representan importantes retos, tanto desde el punto de vista de la aplicación de tratamientos selectivos como para un guiado preciso en la navegación de los mencionados vehículos. En cualquier caso, la calidad de las imágenes se ve afectada por las condiciones de iluminación no controladas en entornos agrícolas de exterior. Además, diferentes alturas y volúmenes de las plantas que se manifiestan por los distintos estados de crecimiento y la presencia de discontinuidades a lo largo de las líneas de cultivo debido a una mala germinación o defectos durante la siembra, dificultan los procesos de detección de líneas de cultivo y discriminación entre cultivo y malas hierbas. Las imágenes fueron tomadas bajo proyección de perspectiva con una cámara instalada a bordo del tractor y convenientemente colocada en la parte frontal. Con respecto a la detección de las líneas de cultivo, se han propuesto dos nuevos métodos para la detección de líneas curvas y rectas en campos de maíz durante los estados iniciales de crecimiento del cultivo y malas hierbas. El objetivo final es la identificación de las líneas de cultivo con dos propósitos: a) guiado preciso en vehículos autónomos; b) tratamientos específicos, incluyendo la eliminación de malas hierbas, situadas entre las líneas. Los métodos propuestos se diseñaron con la robustez requerida para abordar el problema de las condiciones adversas indicadas previamente y constan de tres fases consecutivas: (i) segmentación de la imagen, (ii) identificación de los puntos de comienzo de las líneas de cultivo y (iii) detección de las propias líneas. La principal contribución de estos métodos estriba en su capacidad para detectar líneas de cultivo curvas y rectas con espaciados regulares o irregulares entre las líneas, incluso cuando coexisten tipos de líneas en el mismo campo e imagen. Ambos métodos, difieren entre ellos en la fase de detección. Uno se basa en la acumulación de píxeles verdes y el otro en lo que se conoce como concepto de micro-ROIs (Region Of Interest). Los rendimientos de los métodos propuestos se compararon cuantitativamente frente a cinco estrategias existentes, consiguiendo precisiones entre el 86.3% y el 92.8%, dependiendo de si las líneas de cultivo son curvas o rectas con espaciado regular o irregular, con tiempos de procesamiento menores que 0.64 s por imagen..
    corecore