164,408 research outputs found
Surface Acoustic Waves in Thin Films Nanometrology
Thin films nanometrology is an emerging field in nanoscience as the synthesis, processing and applications of nanostructured thin films require an in-depth knowledge of their elastic constants. The elastic energy of a surface acoustic wave propagating in a solid medium, is concentrated at the interface between the solid and air (or a sufficiently rarified medium); consequently, high frequency surface acoustic waves with sub-micrometer wavelengths are an extraordinary tool for a qualitative and quantitative elastic characterization of thin films. In this article, a short review is presented to describe the main ultrasound techniques based on surface acoustic waves for thin films characterization and to highlight the probing limits
of acoustic nanometrology
Research and calibration of Acoustic Sensors in ice within the SPATS (South Pole Acoustic Test Setup) project
We present development work aiming towards a large scale ice-based hybrid
detector including acoustic sensors for the detection of neutrinos in the GZK
range. A facility for characterization and calibration of acoustic sensors in
clear (bubble-free) ice has been developed and the first measurements done at
this facility are presented. Further, a resonant sensor intended primarily for
characterization of the ambient noise in the ice at the South Pole has been
developed and some data from its performance are given.Comment: 4 pages, 8 figures, ARENA 2010 conference proceeding
Metallic multilayers for X-band Bragg reflector applications
We present a structural and high frequency (8.72GHz) electrical characterization of sputter deposited Ti/W, Ti/Ru and Mo/Ti metallic multilayers for potential application as acoustic Bragg reflectors. We prove that all metallic multilayers comprised of different acoustic impedance metals such as Ti, W, Mo are promising candidates for Bragg reflector/bottom electrode in full X-band thin film acoustic resonators. Values for high frequency resistivity of the order of are measured by use of a contact-free/non-invasive sheet resistance method
Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons
Fundamental interactions induced by lattice vibrations on ultrafast time
scales become increasingly important for modern nanoscience and technology.
Experimental access to the physical properties of acoustic phonons in the THz
frequency range and over the entire Brillouin zone is crucial for understanding
electric and thermal transport in solids and their compounds. Here, we report
on the generation and nonlinear propagation of giant (1 percent) acoustic
strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast
surface plasmon interferometry. This new technique allows for unambiguous
characterization of arbitrary ultrafast acoustic transients. The giant acoustic
pulses experience substantial nonlinear reshaping already after a propagation
distance of 100 nm in a crystalline gold layer. Excellent agreement with the
Korteveg-de Vries model points to future quantitative nonlinear femtosecond
THz-ultrasonics at the nano-scale in metals at room temperature
Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide
The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined
Rheo-acoustic gels: Tuning mechanical and flow properties of colloidal gels with ultrasonic vibrations
Colloidal gels, where nanoscale particles aggregate into an elastic yet
fragile network, are at the heart of materials that combine specific optical,
electrical and mechanical properties. Tailoring the viscoelastic features of
colloidal gels in real-time thanks to an external stimulus currently appears as
a major challenge in the design of "smart" soft materials. Here we introduce
"rheo-acoustic" gels, a class of materials that are sensitive to ultrasonic
vibrations. By using a combination of rheological and structural
characterization, we evidence and quantify a strong softening in three widely
different colloidal gels submitted to ultrasonic vibrations (with submicron
amplitude and frequency 20-500 kHz). This softening is attributed to
micron-sized cracks within the gel network that may or may not fully heal once
vibrations are turned off depending on the acoustic intensity. Ultrasonic
vibrations are further shown to dramatically decrease the gel yield stress and
accelerate shear-induced fluidization. Ultrasound-assisted fluidization
dynamics appear to be governed by an effective temperature that depends on the
acoustic intensity. Our work opens the way to a full control of elastic and
flow properties by ultrasonic vibrations as well as to future theoretical and
numerical modeling of such rheo-acoustic gels.Comment: 21 pages, 14 figure
Coupled multi-disciplinary simulation of composite engine structures in propulsion environment
A computational simulation procedure is described for the coupled response of multi-layered multi-material composite engine structural components which are subjected to simultaneous multi-disciplinary thermal, structural, vibration, and acoustic loadings including the effect of hostile environments. The simulation is based on a three dimensional finite element analysis technique in conjunction with structural mechanics codes and with acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometrical, material, loading, and environmental behavior of aircraft engine fan blades, are presented. Results for deformed shape, vibration frequency, mode shapes, and acoustic noise emitted from the fan blade, are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multi-disciplinary computational simulation and the various advantages of composite materials compared to metals
Minimal symmetric Darlington synthesis
We consider the symmetric Darlington synthesis of a p x p rational symmetric
Schur function S with the constraint that the extension is of size 2p x 2p.
Under the assumption that S is strictly contractive in at least one point of
the imaginary axis, we determine the minimal McMillan degree of the extension.
In particular, we show that it is generically given by the number of zeros of
odd multiplicity of I-SS*. A constructive characterization of all such
extensions is provided in terms of a symmetric realization of S and of the
outer spectral factor of I-SS*. The authors's motivation for the problem stems
from Surface Acoustic Wave filters where physical constraints on the
electro-acoustic scattering matrix naturally raise this mathematical issue
- …
