330 research outputs found

    Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks

    Full text link
    With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: spectrum efficiency (SE) versus energy efficiency (EE), deployment efficiency (DE) versus energy efficiency (EE), delay (DL) versus power (PW), and bandwidth (BW) versus power (PW). In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing (OFDM) and non-orthogonal aggregation (NOA), multiple input multiple output (MIMO), and heterogeneous networks (HetNets). We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.Comment: revised from IEEE Communications Surveys & Tutorial

    A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends

    Full text link
    Non-orthogonal multiple access (NOMA) is an essential enabling technology for the fifth generation (5G) wireless networks to meet the heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high throughput. The key idea behind NOMA is to serve multiple users in the same resource block, such as a time slot, subcarrier, or spreading code. The NOMA principle is a general framework, and several recently proposed 5G multiple access schemes can be viewed as special cases. This survey provides an overview of the latest NOMA research and innovations as well as their applications. Thereby, the papers published in this special issue are put into the content of the existing literature. Future research challenges regarding NOMA in 5G and beyond are also discussed.Comment: to appear in IEEE JSAC, 201

    Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues

    Full text link
    As a promising paradigm to reduce both capital and operating expenditures, the cloud radio access network (C-RAN) has been shown to provide high spectral efficiency and energy efficiency. Motivated by its significant theoretical performance gains and potential advantages, C-RANs have been advocated by both the industry and research community. This paper comprehensively surveys the recent advances of C-RANs, including system architectures, key techniques, and open issues. The system architectures with different functional splits and the corresponding characteristics are comprehensively summarized and discussed. The state-of-the-art key techniques in C-RANs are classified as: the fronthaul compression, large-scale collaborative processing, and channel estimation in the physical layer; and the radio resource allocation and optimization in the upper layer. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of edge cache, big data mining, social-aware device-to-device, cognitive radio, software defined network, and physical layer security for C-RANs are discussed, and the progress of testbed development and trial test are introduced as well.Comment: 27 pages, 11 figure

    Optimizing IoT Energy Efficiency on Edge (EEE): a Cross-layer Design in a Cognitive Mesh Network

    Full text link
    Battery-powered wireless IoT devices are now widely seen in many critical applications. Given the limited battery capacity and inaccessibility to external power recharge, optimizing energy efficiency (EE) plays a vital role in prolonging the lifetime of these IoT devices. However, a sheer amount of existing works only focus on the EE design at the infrastructure level such as base stations (BSs) but with little attention to the EE design at the device level. In this paper, we propose a novel idea that aims to shift energy consumption to a grid-powered cognitive radio mesh network thus preserving energy of battery-powered devices. Under this line of thinking, we cast the design into a cross-layer optimization problem with an objective to maximize devices' energy efficiency. To solve this problem, we propose a parametric transformation technique to convert the original problem into a more tractable one. A baseline scheme is used to demonstrate the advantage of our design. We also carry out extensive simulations to exhibit the optimality of our proposed algorithms and the network performance under various settings

    Cognitive Wireless Powered Network: Spectrum Sharing Models and Throughput Maximization

    Full text link
    The recent advance in radio-frequency (RF) wireless energy transfer (WET) has motivated the study of wireless powered communication network (WPCN), in which distributed wireless devices are powered via dedicated WET by the hybrid access-point (H-AP) in the downlink (DL) for uplink (UL) wireless information transmission (WIT). In this paper, by exploiting the cognitive radio (CR) technique, we study a new type of CR enabled secondary WPCN, called cognitive WPCN, under spectrum sharing with the primary wireless communication system. In particular, we consider a cognitive WPCN, consisting of one single H-AP with constant power supply and distributed users, shares the same spectrum for its DL WET and UL WIT with an existing primary communication link, where the WPCN's WET/WIT and the primary link's WIT may interfere with each other. Under this new setup, we propose two coexisting models for spectrum sharing of the two systems, namely underlay and overlay based cognitive WPCNs, depending on different types of knowledge on the primary user transmission available at the cognitive WPCN. For each model, we maximize the sum-throughput of the cognitive WPCN by optimizing its transmission under different constraints applied to protect the primary user transmission. Analysis and simulation results are provided to compare the sum-throughput of the cognitive WPCN versus the achievable rate of the primary user in two coexisting models. It is shown that the overlay based cognitive WPCN outperforms the underlay based counterpart, thanks to its fully cooperative WET/WIT design with the primary WIT, while it also requires higher complexity for implementation.Comment: This is the longer version of a paper to appear in IEEE Transactions on Cognitive Communications and Networkin

    Throughput Enhancement of Multicarrier Cognitive M2M Networks: Universal-Filtered OFDM Systems

    Full text link
    We consider a cognitive radio network consisting of a primary cellular system and a secondary cognitive machine-to-machine (M2M) system, and study the throughput enhancement problem of the latter system employing universal-filtered orthogonal frequency division multiplexing (UF-OFDM) modulation. The downlink transmission capacity of the cognitive M2M system is thereby maximized, while keeping the interference introduced to the primary users (PUs) below the pre-specified threshold, under total transmit power budget of the secondary base station (SBS). The performance of UF-OFDM based CR system is compared to the performances of OFDM-based and filter bank multicarrier (FBMC)-based CR systems. We also propose a near-optimal resource allocation method separating the subband and power allocation. The solution is less complex compared to optimization of the original combinatorial problem. We present numerical results that show that for given interference thresholds of the PUs and maximum transmit power limit of the SBS, the UF-OFDM based CR system exhibits intermediary performance in terms of achievable capacity compared to OFDM and FBMC-based CR systems. Interestingly, for a certain degree of robustness of the PUs, the UF-OFDM performs equally well as FBMC. Furthermore, the percentage rate-gain of UF-OFDM based CR system increases by a large amount when UF-OFDM modulation with lower sidelobes ripple is employed. Numerical results also show that the proposed throughput enhancing method despite having lower computational complexity compared to the optimal solution achieves near-optimal performance

    Capacity and performance analysis for multi-user system under distributed opportunistic scheduling in a time dependent channel

    Full text link
    Consider the problem of a multi-user multiple access channel. While several multi-user coding techniques exist, in practical scenarios, not all users can be scheduled simultaneously. Thus, a key problem is which users to schedule in a given time slot. Under realistic approach for time dependency of the channel, we adopt a distributed scheduling algorithm in which each user, in the beginning of each slot, estimates his channel gain and compares it to a threshold, and if exceeding it the user can transmit. In this work we are interested in the expected capacity of the system and the delay and quality of service of the data accumulated at the users under this scheduling scheme. First we derive the expected capacity under scheduling (distributed and centralized) for this time dependent environment and show that its scaling law is O(σg2logK+μg)O(\sigma_g\sqrt{2\log K}+\mu_g), were σg,μg\sigma_g, \mu_g are the good channel parameters (assuming Gaussian capacity approximation, e.g., under MIMO) and KK is the number of users. Then we turn to the performance analysis of such system while assuming the users are not necessarily fully backlogged, and focus specifically on the queueing problem and the strong dependence between the queues which leave no alternative but to turn to approximate models for this system. We adopt the celebrated model of Ephremides and Zhu to give new results on the convergence of the probability of collision to its average value (as the number of users grows), and hence for the ensuing system performance metrics, such as throughput and delay. We further utilize this finding to suggest a much simpler approximate model, which accurately describes the system behavior when the number of queues is large. The system performance as predicted by the approximate models shows excellent agreement with simulation results

    Joint Spatial Division and Multiplexing

    Full text link
    We propose Joint Spatial Division and Multiplexing (JSDM), an approach to multiuser MIMO downlink that exploits the structure of the correlation of the channel vectors in order to allow for a large number of antennas at the base station while requiring reduced-dimensional Channel State Information at the Transmitter (CSIT). This allows for significant savings both in the downlink training and in the CSIT feedback from the user terminals to the base station, thus making the use of a large number of base station antennas potentially suitable also for Frequency Division Duplexing (FDD) systems, for which uplink/downlink channel reciprocity cannot be exploited. JSDM forms the multiuser MIMO downlink precoder by concatenating a pre-beamforming matrix, which depends only on the channel second-order statistics, with a classical multiuser precoder, based on the instantaneous knowledge of the resulting reduced dimensional effective channels. We prove a simple condition under which JSDM incurs no loss of optimality with respect to the full CSIT case. For linear uniformly spaced arrays, we show that such condition is closely approached when the number of antennas is large. For this case, we use Szego asymptotic theory of large Toeplitz matrices to design a DFT-based pre-beamforming scheme requiring only coarse information about the users angles of arrival and angular spread. Finally, we extend these ideas to the case of a two-dimensional base station antenna array, with 3-dimensional beamforming, including multiple beams in the elevation angle direction. We provide guidelines for the pre-beamforming optimization and calculate the system spectral efficiency under proportional fairness and maxmin fairness criteria, showing extremely attractive performance. Our numerical results are obtained via an asymptotic random matrix theory tool known as deterministic equivalent approximation.Comment: 10 figure

    A Survey on MIMO Transmission with Discrete Input Signals: Technical Challenges, Advances, and Future Trends

    Full text link
    Multiple antennas have been exploited for spatial multiplexing and diversity transmission in a wide range of communication applications. However, most of the advances in the design of high speed wireless multiple-input multiple output (MIMO) systems are based on information-theoretic principles that demonstrate how to efficiently transmit signals conforming to Gaussian distribution. Although the Gaussian signal is capacity-achieving, signals conforming to discrete constellations are transmitted in practical communication systems. As a result, this paper is motivated to provide a comprehensive overview on MIMO transmission design with discrete input signals. We first summarize the existing fundamental results for MIMO systems with discrete input signals. Then, focusing on the basic point-to-point MIMO systems, we examine transmission schemes based on three most important criteria for communication systems: the mutual information driven designs, the mean square error driven designs, and the diversity driven designs. Particularly, a unified framework which designs low complexity transmission schemes applicable to massive MIMO systems in upcoming 5G wireless networks is provided in the first time. Moreover, adaptive transmission designs which switch among these criteria based on the channel conditions to formulate the best transmission strategy are discussed. Then, we provide a survey of the transmission designs with discrete input signals for multiuser MIMO scenarios, including MIMO uplink transmission, MIMO downlink transmission, MIMO interference channel, and MIMO wiretap channel. Additionally, we discuss the transmission designs with discrete input signals for other systems using MIMO technology. Finally, technical challenges which remain unresolved at the time of writing are summarized and the future trends of transmission designs with discrete input signals are addressed.Comment: 110 pages, 512 references, submit to Proceedings of the IEE

    Delay-Constrained Video Transmission: Quality-driven Resource Allocation and Scheduling

    Full text link
    Real-time video demands quality-of-service (QoS) guarantees such as delay bounds for end-user satisfaction. Furthermore, the tolerable delay varies depending on the use case such as live streaming or two-way video conferencing. Due to the inherently stochastic nature of wireless fading channels, deterministic delay bounds are difficult to guarantee. Instead, we propose providing statistical delay guarantees using the concept of effective capacity. We consider a multiuser setup whereby different users have (possibly different) delay QoS constraints. We derive the resource allocation policy that maximizes the sum video quality and applies to any quality metric with concave rate-quality mapping. We show that the optimal operating point per user is such that the rate-distortion slope is the inverse of the supported video source rate per unit bandwidth, a key metric we refer to as the source spectral efficiency. We also solve the alternative problem of fairness-based resource allocation whereby the objective is to maximize the minimum video quality across users. Finally, we derive user admission and scheduling policies that enable selecting a maximal user subset such that all selected users can meet their statistical delay requirement. Results show that video users with differentiated QoS requirements can achieve similar video quality with vastly different resource requirements. Thus, QoS-aware scheduling and resource allocation enable supporting significantly more users under the same resource constraints.Comment: Submitted to IEEE Journal of Selected Topics in Signal Processin
    corecore