17 research outputs found

    Achieving Verified Robustness to Symbol Substitutions via Interval Bound Propagation

    Full text link
    Neural networks are part of many contemporary NLP systems, yet their empirical successes come at the price of vulnerability to adversarial attacks. Previous work has used adversarial training and data augmentation to partially mitigate such brittleness, but these are unlikely to find worst-case adversaries due to the complexity of the search space arising from discrete text perturbations. In this work, we approach the problem from the opposite direction: to formally verify a system's robustness against a predefined class of adversarial attacks. We study text classification under synonym replacements or character flip perturbations. We propose modeling these input perturbations as a simplex and then using Interval Bound Propagation -- a formal model verification method. We modify the conventional log-likelihood training objective to train models that can be efficiently verified, which would otherwise come with exponential search complexity. The resulting models show only little difference in terms of nominal accuracy, but have much improved verified accuracy under perturbations and come with an efficiently computable formal guarantee on worst case adversaries.Comment: EMNLP 201

    Policy Smoothing for Provably Robust Reinforcement Learning

    Full text link
    The study of provable adversarial robustness for deep neural networks (DNNs) has mainly focused on static supervised learning tasks such as image classification. However, DNNs have been used extensively in real-world adaptive tasks such as reinforcement learning (RL), making such systems vulnerable to adversarial attacks as well. Prior works in provable robustness in RL seek to certify the behaviour of the victim policy at every time-step against a non-adaptive adversary using methods developed for the static setting. But in the real world, an RL adversary can infer the defense strategy used by the victim agent by observing the states, actions, etc. from previous time-steps and adapt itself to produce stronger attacks in future steps. We present an efficient procedure, designed specifically to defend against an adaptive RL adversary, that can directly certify the total reward without requiring the policy to be robust at each time-step. Our main theoretical contribution is to prove an adaptive version of the Neyman-Pearson Lemma -- a key lemma for smoothing-based certificates -- where the adversarial perturbation at a particular time can be a stochastic function of current and previous observations and states as well as previous actions. Building on this result, we propose policy smoothing where the agent adds a Gaussian noise to its observation at each time-step before passing it through the policy function. Our robustness certificates guarantee that the final total reward obtained by policy smoothing remains above a certain threshold, even though the actions at intermediate time-steps may change under the attack. Our experiments on various environments like Cartpole, Pong, Freeway and Mountain Car show that our method can yield meaningful robustness guarantees in practice
    corecore