157,539 research outputs found

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with specifi c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of specifi cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and specifi c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Modelling of heat emitters embedded within third order lumped parameter building envelope model

    Get PDF
    A dynamic modelling approach for heat emitters embedded within an existing third order lumped parameter building envelope model is reported in this work. The model has been found to provide more accurate results with negligible expense of computational time compared to a conventional quasi-dynamic model. The dynamic model also is preferred over the quasi-dynamic model as it allows for modelling emitters with high thermal capacity such as under-floor heating. Recommendation for this approach is justified through a series of analyses and comparative tests for various circuit options, timesteps and control volumes

    An efficient nonlinear circuit simulation technique

    Get PDF
    This paper proposes a new and efficient approach for the analysis and simulation of circuits subject to input signals with widely separated rates of variation. Such signals arise in communication circuits when an RF carrier is modulated by a low-frequency information signal. The proposed technique initially involves converting the ordinary differential equation system, that describes the nonlinear circuit, to a partial differential equation system. The resultant system is then semidiscretised using a multiresolution collocation scheme, involving cubic spline wavelet decomposition. A reduced equation system is subsequently formed, using a nonlinear model reduction strategy. This enables an efficient solution process using trapezoidal numerical integration. Results highlight the efficacy of the proposed approach

    Mining Frequent Graph Patterns with Differential Privacy

    Full text link
    Discovering frequent graph patterns in a graph database offers valuable information in a variety of applications. However, if the graph dataset contains sensitive data of individuals such as mobile phone-call graphs and web-click graphs, releasing discovered frequent patterns may present a threat to the privacy of individuals. {\em Differential privacy} has recently emerged as the {\em de facto} standard for private data analysis due to its provable privacy guarantee. In this paper we propose the first differentially private algorithm for mining frequent graph patterns. We first show that previous techniques on differentially private discovery of frequent {\em itemsets} cannot apply in mining frequent graph patterns due to the inherent complexity of handling structural information in graphs. We then address this challenge by proposing a Markov Chain Monte Carlo (MCMC) sampling based algorithm. Unlike previous work on frequent itemset mining, our techniques do not rely on the output of a non-private mining algorithm. Instead, we observe that both frequent graph pattern mining and the guarantee of differential privacy can be unified into an MCMC sampling framework. In addition, we establish the privacy and utility guarantee of our algorithm and propose an efficient neighboring pattern counting technique as well. Experimental results show that the proposed algorithm is able to output frequent patterns with good precision
    corecore