7 research outputs found

    Treewidth versus clique number. IV. Tree-independence number of graphs excluding an induced star

    Full text link
    Many recent works address the question of characterizing induced obstructions to bounded treewidth. In 2022, Lozin and Razgon completely answered this question for graph classes defined by finitely many forbidden induced subgraphs. Their result also implies a characterization of graph classes defined by finitely many forbidden induced subgraphs that are (tw,ω)(tw,\omega)-bounded, that is, treewidth can only be large due to the presence of a large clique. This condition is known to be satisfied for any graph class with bounded tree-independence number, a graph parameter introduced independently by Yolov in 2018 and by Dallard, Milani\v{c}, and \v{S}torgel in 2024. Dallard et al. conjectured that (tw,ω)(tw,\omega)-boundedness is actually equivalent to bounded tree-independence number. We address this conjecture in the context of graph classes defined by finitely many forbidden induced subgraphs and prove it for the case of graph classes excluding an induced star. We also prove it for subclasses of the class of line graphs, determine the exact values of the tree-independence numbers of line graphs of complete graphs and line graphs of complete bipartite graphs, and characterize the tree-independence number of P4P_4-free graphs, which implies a linear-time algorithm for its computation. Applying the algorithmic framework provided in a previous paper of the series leads to polynomial-time algorithms for the Maximum Weight Independent Set problem in an infinite family of graph classes.Comment: 26 page

    Comparing Width Parameters on Graph Classes

    Full text link
    We study how the relationship between non-equivalent width parameters changes once we restrict to some special graph class. As width parameters, we consider treewidth, clique-width, twin-width, mim-width, sim-width and tree-independence number, whereas as graph classes we consider Kt,tK_{t,t}-subgraph-free graphs, line graphs and their common superclass, for t3t \geq 3, of Kt,tK_{t,t}-free graphs. We first provide a complete comparison when restricted to Kt,tK_{t,t}-subgraph-free graphs, showing in particular that treewidth, clique-width, mim-width, sim-width and tree-independence number are all equivalent. This extends a result of Gurski and Wanke (2000) stating that treewidth and clique-width are equivalent for the class of Kt,tK_{t,t}-subgraph-free graphs. Next, we provide a complete comparison when restricted to line graphs, showing in particular that, on any class of line graphs, clique-width, mim-width, sim-width and tree-independence number are all equivalent, and bounded if and only if the class of root graphs has bounded treewidth. This extends a result of Gurski and Wanke (2007) stating that a class of graphs G{\cal G} has bounded treewidth if and only if the class of line graphs of graphs in G{\cal G} has bounded clique-width. We then provide an almost-complete comparison for Kt,tK_{t,t}-free graphs, leaving one missing case. Our main result is that Kt,tK_{t,t}-free graphs of bounded mim-width have bounded tree-independence number. This result has structural and algorithmic consequences. In particular, it proves a special case of a conjecture of Dallard, Milani\v{c} and \v{S}torgel. Finally, we consider the question of whether boundedness of a certain width parameter is preserved under graph powers. We show that the question has a positive answer for sim-width precisely in the case of odd powers.Comment: 31 pages, 4 figures, abstract shortened due to arXiv requirement
    corecore