13 research outputs found

    Towards the Secrecy Capacity of the Gaussian MIMO Wire-tap Channel: The 2-2-1 Channel

    Full text link
    We find the secrecy capacity of the 2-2-1 Gaussian MIMO wire-tap channel, which consists of a transmitter and a receiver with two antennas each, and an eavesdropper with a single antenna. We determine the secrecy capacity of this channel by proposing an achievable scheme and then developing a tight upper bound that meets the proposed achievable secrecy rate. We show that, for this channel, Gaussian signalling in the form of beam-forming is optimal, and no pre-processing of information is necessary.Comment: Submitted to IEEE Transactions on Information Theor

    Secrecy when the eavesdropper controls its channel states

    Full text link

    Waveform Design for Secure SISO Transmissions and Multicasting

    Full text link
    Wireless physical-layer security is an emerging field of research aiming at preventing eavesdropping in an open wireless medium. In this paper, we propose a novel waveform design approach to minimize the likelihood that a message transmitted between trusted single-antenna nodes is intercepted by an eavesdropper. In particular, with knowledge first of the eavesdropper's channel state information (CSI), we find the optimum waveform and transmit energy that minimize the signal-to-interference-plus-noise ratio (SINR) at the output of the eavesdropper's maximum-SINR linear filter, while at the same time provide the intended receiver with a required pre-specified SINR at the output of its own max-SINR filter. Next, if prior knowledge of the eavesdropper's CSI is unavailable, we design a waveform that maximizes the amount of energy available for generating disturbance to eavesdroppers, termed artificial noise (AN), while the SINR of the intended receiver is maintained at the pre-specified level. The extensions of the secure waveform design problem to multiple intended receivers are also investigated and semidefinite relaxation (SDR) -an approximation technique based on convex optimization- is utilized to solve the arising NP-hard design problems. Extensive simulation studies confirm our analytical performance predictions and illustrate the benefits of the designed waveforms on securing single-input single-output (SISO) transmissions and multicasting

    Cooperative jamming via spectrum leasing

    Full text link
    Abstract—Secure communication rates can be facilitated or enhanced via deployment of cooperative jammers in a multi-terminal environment. Such an approach typically assumes ded-icated and/or altruistic jamming nodes, investing their resources for the good of the whole system. In this paper, we demonstrate that jammers can be recruited to provide significant improve-ments of secrecy rates even when this assumption is alleviated. A game-theoretic framework is proposed where a source node, towards the maximization of its secrecy rate, utilizes the jamming services from a set of non-altruistic nodes, compensating them with a fraction of its bandwidth for transmission of their user data. With the goal of maximizing their user-data transmission rate priced by the invested power, potential cooperative jammers will provide the jamming/transmitting power that is generally proportional to the amount of leased bandwidth. Elaborating initially on a single-jammer scenario, interaction between the source and a cooperative jammer is modeled as the Stackelberg leader-follower game. The scheme is further extended to involve multiple potential jammers, applying competition mechanisms such as the auctioning and power control game, while maintain-ing the Stackelberg framework. I

    Cooperation with an Untrusted Relay: A Secrecy Perspective

    Full text link
    We consider the communication scenario where a source-destination pair wishes to keep the information secret from a relay node despite wanting to enlist its help. For this scenario, an interesting question is whether the relay node should be deployed at all. That is, whether cooperation with an untrusted relay node can ever be beneficial. We first provide an achievable secrecy rate for the general untrusted relay channel, and proceed to investigate this question for two types of relay networks with orthogonal components. For the first model, there is an orthogonal link from the source to the relay. For the second model, there is an orthogonal link from the relay to the destination. For the first model, we find the equivocation capacity region and show that answer is negative. In contrast, for the second model, we find that the answer is positive. Specifically, we show by means of the achievable secrecy rate based on compress-and-forward, that, by asking the untrusted relay node to relay information, we can achieve a higher secrecy rate than just treating the relay as an eavesdropper. For a special class of the second model, where the relay is not interfering itself, we derive an upper bound for the secrecy rate using an argument whose net effect is to separate the eavesdropper from the relay. The merit of the new upper bound is demonstrated on two channels that belong to this special class. The Gaussian case of the second model mentioned above benefits from this approach in that the new upper bound improves the previously known bounds. For the Cover-Kim deterministic relay channel, the new upper bound finds the secrecy capacity when the source-destination link is not worse than the source-relay link, by matching with the achievable rate we present.Comment: IEEE Transactions on Information Theory, submitted October 2008, revised October 2009. This is the revised versio
    corecore