288 research outputs found

    Adaptive Mode Selection and Power Allocation in Bidirectional Buffer-aided Relay Networks

    Full text link
    In this paper, we consider the problem of sum rate maximization in a bidirectional relay network with fading. Hereby, user 1 and user 2 communicate with each other only through a relay, i.e., a direct link between user 1 and user 2 is not present. In this network, there exist six possible transmission modes: four point-to-point modes (user 1-to-relay, user 2-to-relay, relay-to-user 1, relay-to-user 2), a multiple access mode (both users to the relay), and a broadcast mode (the relay to both users). Most existing protocols assume a fixed schedule of using a subset of the aforementioned transmission modes, as a result, the sum rate is limited by the capacity of the weakest link associated with the relay in each time slot. Motivated by this limitation, we develop a protocol which is not restricted to adhere to a predefined schedule for using the transmission modes. Therefore, all transmission modes of the bidirectional relay network can be used adaptively based on the instantaneous channel state information (CSI) of the involved links. To this end, the relay has to be equipped with two buffers for the storage of the information received from users 1 and 2, respectively. For the considered network, given a total average power budget for all nodes, we jointly optimize the transmission mode selection and power allocation based on the instantaneous CSI in each time slot for sum rate maximization. Simulation results show that the proposed protocol outperforms existing protocols for all signal-to-noise ratios (SNRs). Specifically, we obtain a considerable gain at low SNRs due to the adaptive power allocation and at high SNRs due to the adaptive mode selection.Comment: arXiv admin note: substantial text overlap with arXiv:1303.373

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    • …
    corecore