6,616 research outputs found

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF

    Affine Correspondences between Multi-Camera Systems for Relative Pose Estimation

    Full text link
    We present a novel method to compute the relative pose of multi-camera systems using two affine correspondences (ACs). Existing solutions to the multi-camera relative pose estimation are either restricted to special cases of motion, have too high computational complexity, or require too many point correspondences (PCs). Thus, these solvers impede an efficient or accurate relative pose estimation when applying RANSAC as a robust estimator. This paper shows that the 6DOF relative pose estimation problem using ACs permits a feasible minimal solution, when exploiting the geometric constraints between ACs and multi-camera systems using a special parameterization. We present a problem formulation based on two ACs that encompass two common types of ACs across two views, i.e., inter-camera and intra-camera. Moreover, the framework for generating the minimal solvers can be extended to solve various relative pose estimation problems, e.g., 5DOF relative pose estimation with known rotation angle prior. Experiments on both virtual and real multi-camera systems prove that the proposed solvers are more efficient than the state-of-the-art algorithms, while resulting in a better relative pose accuracy. Source code is available at https://github.com/jizhaox/relpose-mcs-depth

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    Resilience and food security in a food systems context

    Get PDF
    This open access book compiles a series of chapters written by internationally recognized experts known for their in-depth but critical views on questions of resilience and food security. The book assesses rigorously and critically the contribution of the concept of resilience in advancing our understanding and ability to design and implement development interventions in relation to food security and humanitarian crises. For this, the book departs from the narrow beaten tracks of agriculture and trade, which have influenced the mainstream debate on food security for nearly 60 years, and adopts instead a wider, more holistic perspective, framed around food systems. The foundation for this new approach is the recognition that in the current post-globalization era, the food and nutritional security of the world’s population no longer depends just on the performance of agriculture and policies on trade, but rather on the capacity of the entire (food) system to produce, process, transport and distribute safe, affordable and nutritious food for all, in ways that remain environmentally sustainable. In that context, adopting a food system perspective provides a more appropriate frame as it incites to broaden the conventional thinking and to acknowledge the systemic nature of the different processes and actors involved. This book is written for a large audience, from academics to policymakers, students to practitioners

    Gaussian Control Barrier Functions : A Gaussian Process based Approach to Safety for Robots

    Get PDF
    In recent years, the need for safety of autonomous and intelligent robots has increased. Today, as robots are being increasingly deployed in closer proximity to humans, there is an exigency for safety since human lives may be at risk, e.g., self-driving vehicles or surgical robots. The objective of this thesis is to present a safety framework for dynamical systems that leverages tools from control theory and machine learning. More formally, the thesis presents a data-driven framework for designing safety function candidates which ensure properties of forward invariance. The potential benefits of the results presented in this thesis are expected to help applications such as safe exploration, collision avoidance problems, manipulation tasks, and planning, to name some. We utilize Gaussian processes (GP) to place a prior on the desired safety function candidate, which is to be utilized as a control barrier function (CBF). The resultant formulation is called Gaussian CBFs and they reside in a reproducing kernel Hilbert space. A key concept behind Gaussian CBFs is the incorporation of both safety belief as well as safety uncertainty, which former barrier function formulations did not consider. This is achieved by using robust posterior estimates from a GP where the posterior mean and variance serve as surrogates for the safety belief and uncertainty respectively. We synthesize safe controllers by framing a convex optimization problem where the kernel-based representation of GPs allows computing the derivatives in closed-form analytically. Finally, in addition to the theoretical and algorithmic frameworks in this thesis, we rigorously test our methods in hardware on a quadrotor platform. The platform used is a Crazyflie 2.1 which is a versatile palm-sized quadrotor. We provide our insights and detailed discussions on the hardware implementations which will be useful for large-scale deployment of the techniques presented in this dissertation.Ph.D

    Complexity Science in Human Change

    Get PDF
    This reprint encompasses fourteen contributions that offer avenues towards a better understanding of complex systems in human behavior. The phenomena studied here are generally pattern formation processes that originate in social interaction and psychotherapy. Several accounts are also given of the coordination in body movements and in physiological, neuronal and linguistic processes. A common denominator of such pattern formation is that complexity and entropy of the respective systems become reduced spontaneously, which is the hallmark of self-organization. The various methodological approaches of how to model such processes are presented in some detail. Results from the various methods are systematically compared and discussed. Among these approaches are algorithms for the quantification of synchrony by cross-correlational statistics, surrogate control procedures, recurrence mapping and network models.This volume offers an informative and sophisticated resource for scholars of human change, and as well for students at advanced levels, from graduate to post-doctoral. The reprint is multidisciplinary in nature, binding together the fields of medicine, psychology, physics, and neuroscience

    Hyperlocal weather parameter sensing with mmWave signals

    Get PDF
    The evolution of mobile communication technologies to achieve higher throughputs has led to the use of higher frequency bands. 5G technologies are working on the mmWave spectrum, which are frequencies between 30 GHz and 300 GHz, and it is expected that 6G would use even higher frequencies. The wavelength of the signals in these bands are like those used in radars, giving the possibility to use the wave for other things be-sides transmitting information. Network sensing is one of the use cases that can be exploited from the mmWave. Signal loss under different weather conditions has been studied and modeled for over 20 years. Based on these models, this thesis develops a deep learning LSTM model that accurately detects precipitation from a mmWave backhaul link

    Improving Online Lane Graph Extraction by Object-Lane Clustering

    Full text link
    Autonomous driving requires accurate local scene understanding information. To this end, autonomous agents deploy object detection and online BEV lane graph extraction methods as a part of their perception stack. In this work, we propose an architecture and loss formulation to improve the accuracy of local lane graph estimates by using 3D object detection outputs. The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers and the objects as data points to be assigned a probability distribution over the cluster centers. This training scheme ensures direct supervision on the relationship between lanes and objects, thus leading to better performance. The proposed method improves lane graph estimation substantially over state-of-the-art methods. The extensive ablations show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods. Since our method uses the detection outputs rather than detection method intermediate representations, a single model of our method can use any detection method at test time.Comment: ICCV 202
    • …
    corecore