23,974 research outputs found

    Planar PØP: feature-less pose estimation with applications in UAV localization

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We present a featureless pose estimation method that, in contrast to current Perspective-n-Point (PnP) approaches, it does not require n point correspondences to obtain the camera pose, allowing for pose estimation from natural shapes that do not necessarily have distinguished features like corners or intersecting edges. Instead of using n correspondences (e.g. extracted with a feature detector) we will use the raw polygonal representation of the observed shape and directly estimate the pose in the pose-space of the camera. This method compared with a general PnP method, does not require n point correspondences neither a priori knowledge of the object model (except the scale), which is registered with a picture taken from a known robot pose. Moreover, we achieve higher precision because all the information of the shape contour is used to minimize the area between the projected and the observed shape contours. To emphasize the non-use of n point correspondences between the projected template and observed contour shape, we call the method Planar PØP. The method is shown both in simulation and in a real application consisting on a UAV localization where comparisons with a precise ground-truth are provided.Peer ReviewedPostprint (author's final draft

    AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming

    Full text link
    The combination of aerial survey capabilities of Unmanned Aerial Vehicles with targeted intervention abilities of agricultural Unmanned Ground Vehicles can significantly improve the effectiveness of robotic systems applied to precision agriculture. In this context, building and updating a common map of the field is an essential but challenging task. The maps built using robots of different types show differences in size, resolution and scale, the associated geolocation data may be inaccurate and biased, while the repetitiveness of both visual appearance and geometric structures found within agricultural contexts render classical map merging techniques ineffective. In this paper we propose AgriColMap, a novel map registration pipeline that leverages a grid-based multimodal environment representation which includes a vegetation index map and a Digital Surface Model. We cast the data association problem between maps built from UAVs and UGVs as a multimodal, large displacement dense optical flow estimation. The dominant, coherent flows, selected using a voting scheme, are used as point-to-point correspondences to infer a preliminary non-rigid alignment between the maps. A final refinement is then performed, by exploiting only meaningful parts of the registered maps. We evaluate our system using real world data for 3 fields with different crop species. The results show that our method outperforms several state of the art map registration and matching techniques by a large margin, and has a higher tolerance to large initial misalignments. We release an implementation of the proposed approach along with the acquired datasets with this paper.Comment: Published in IEEE Robotics and Automation Letters, 201

    Precise localization for aerial inspection using augmented reality markers

    Get PDF
    The final publication is available at link.springer.comThis chapter is devoted to explaining a method for precise localization using augmented reality markers. This method can achieve precision of less of 5 mm in position at a distance of 0.7 m, using a visual mark of 17 mm × 17 mm, and it can be used by controller when the aerial robot is doing a manipulation task. The localization method is based on optimizing the alignment of deformable contours from textureless images working from the raw vertexes of the observed contour. The algorithm optimizes the alignment of the XOR area computed by means of computer graphics clipping techniques. The method can run at 25 frames per second.Peer ReviewedPostprint (author's final draft
    • …
    corecore