14,703 research outputs found

    On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems

    Full text link
    Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performance loss. In this article, we discuss several important issues based on the most recent research on mmWave massive MIMO systems relying on low-resolution ADCs. We discuss the key transceiver design challenges including channel estimation, signal detector, channel information feedback and transmit precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative technique of improving the overall system performance. Finally, the associated challenges and potential implementations of the practical 5G mmWave massive MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin

    Diversity, Coding, and Multiplexing Trade-Off of Network-Coded Cooperative Wireless Networks

    Full text link
    In this paper, we study the performance of network-coded cooperative diversity systems with practical communication constraints. More specifically, we investigate the interplay between diversity, coding, and multiplexing gain when the relay nodes do not act as dedicated repeaters, which only forward data packets transmitted by the sources, but they attempt to pursue their own interest by forwarding packets which contain a network-coded version of received and their own data. We provide a very accurate analysis of the Average Bit Error Probability (ABEP) for two network topologies with three and four nodes, when practical communication constraints, i.e., erroneous decoding at the relays and fading over all the wireless links, are taken into account. Furthermore, diversity and coding gain are studied, and advantages and disadvantages of cooperation and binary Network Coding (NC) are highlighted. Our results show that the throughput increase introduced by NC is offset by a loss of diversity and coding gain. It is shown that there is neither a coding nor a diversity gain for the source node when the relays forward a network-coded version of received and their own data. Compared to other results available in the literature, the conclusion is that binary NC seems to be more useful when the relay nodes act only on behalf of the source nodes, and do not mix their own packets to the received ones. Analytical derivation and findings are substantiated through extensive Monte Carlo simulations.Comment: IEEE International Conference on Communications (ICC), 2012. Accepted for publication and oral presentatio

    On the relation between energy efficiency and spectral efficiency of multiple-antenna systems

    Get PDF
    Motivated by the increasing interest in energy-efficient communication systems, the relation between energy efficiency (EE) and spectral efficiency (SE) for multiple-input-multiple-output (MIMO) systems is investigated in this paper. To provide insights into the design of practical MIMO systems, we adopt a realistic power model and consider both independent Rayleigh fading and semicorrelated fading channels. We derived a novel and closed-form upper bound (UB) for the system EE as a function of SE. This UB exhibits great accuracy for a wide range of SE values and, thus, can be utilized for explicit assessment of the influence of SE on EE and for analytically addressing the EE optimization problems. Using this tight EE UB, our analysis unfolds two EE optimization issues: Given the number of transmit and receive antennas, an optimum value of SE is derived, such that the overall EE can be maximized, and given a specific value of SE, the optimal number of antennas is derived for maximizing the system EE

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201
    corecore