17,115 research outputs found

    LiDAR and Camera Detection Fusion in a Real Time Industrial Multi-Sensor Collision Avoidance System

    Full text link
    Collision avoidance is a critical task in many applications, such as ADAS (advanced driver-assistance systems), industrial automation and robotics. In an industrial automation setting, certain areas should be off limits to an automated vehicle for protection of people and high-valued assets. These areas can be quarantined by mapping (e.g., GPS) or via beacons that delineate a no-entry area. We propose a delineation method where the industrial vehicle utilizes a LiDAR {(Light Detection and Ranging)} and a single color camera to detect passive beacons and model-predictive control to stop the vehicle from entering a restricted space. The beacons are standard orange traffic cones with a highly reflective vertical pole attached. The LiDAR can readily detect these beacons, but suffers from false positives due to other reflective surfaces such as worker safety vests. Herein, we put forth a method for reducing false positive detection from the LiDAR by projecting the beacons in the camera imagery via a deep learning method and validating the detection using a neural network-learned projection from the camera to the LiDAR space. Experimental data collected at Mississippi State University's Center for Advanced Vehicular Systems (CAVS) shows the effectiveness of the proposed system in keeping the true detection while mitigating false positives.Comment: 34 page

    LIDAR-Camera Fusion for Road Detection Using Fully Convolutional Neural Networks

    Full text link
    In this work, a deep learning approach has been developed to carry out road detection by fusing LIDAR point clouds and camera images. An unstructured and sparse point cloud is first projected onto the camera image plane and then upsampled to obtain a set of dense 2D images encoding spatial information. Several fully convolutional neural networks (FCNs) are then trained to carry out road detection, either by using data from a single sensor, or by using three fusion strategies: early, late, and the newly proposed cross fusion. Whereas in the former two fusion approaches, the integration of multimodal information is carried out at a predefined depth level, the cross fusion FCN is designed to directly learn from data where to integrate information; this is accomplished by using trainable cross connections between the LIDAR and the camera processing branches. To further highlight the benefits of using a multimodal system for road detection, a data set consisting of visually challenging scenes was extracted from driving sequences of the KITTI raw data set. It was then demonstrated that, as expected, a purely camera-based FCN severely underperforms on this data set. A multimodal system, on the other hand, is still able to provide high accuracy. Finally, the proposed cross fusion FCN was evaluated on the KITTI road benchmark where it achieved excellent performance, with a MaxF score of 96.03%, ranking it among the top-performing approaches

    Ego-motion and Surrounding Vehicle State Estimation Using a Monocular Camera

    Full text link
    Understanding ego-motion and surrounding vehicle state is essential to enable automated driving and advanced driving assistance technologies. Typical approaches to solve this problem use fusion of multiple sensors such as LiDAR, camera, and radar to recognize surrounding vehicle state, including position, velocity, and orientation. Such sensing modalities are overly complex and costly for production of personal use vehicles. In this paper, we propose a novel machine learning method to estimate ego-motion and surrounding vehicle state using a single monocular camera. Our approach is based on a combination of three deep neural networks to estimate the 3D vehicle bounding box, depth, and optical flow from a sequence of images. The main contribution of this paper is a new framework and algorithm that integrates these three networks in order to estimate the ego-motion and surrounding vehicle state. To realize more accurate 3D position estimation, we address ground plane correction in real-time. The efficacy of the proposed method is demonstrated through experimental evaluations that compare our results to ground truth data available from other sensors including Can-Bus and LiDAR

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear
    • …
    corecore