70,130 research outputs found
Optimization of miRNA-seq data preprocessing.
The past two decades of microRNA (miRNA) research has solidified the role of these small non-coding RNAs as key regulators of many biological processes and promising biomarkers for disease. The concurrent development in high-throughput profiling technology has further advanced our understanding of the impact of their dysregulation on a global scale. Currently, next-generation sequencing is the platform of choice for the discovery and quantification of miRNAs. Despite this, there is no clear consensus on how the data should be preprocessed before conducting downstream analyses. Often overlooked, data preprocessing is an essential step in data analysis: the presence of unreliable features and noise can affect the conclusions drawn from downstream analyses. Using a spike-in dilution study, we evaluated the effects of several general-purpose aligners (BWA, Bowtie, Bowtie 2 and Novoalign), and normalization methods (counts-per-million, total count scaling, upper quartile scaling, Trimmed Mean of M, DESeq, linear regression, cyclic loess and quantile) with respect to the final miRNA count data distribution, variance, bias and accuracy of differential expression analysis. We make practical recommendations on the optimal preprocessing methods for the extraction and interpretation of miRNA count data from small RNA-sequencing experiments
Species-level functional profiling of metagenomes and metatranscriptomes.
Functional profiles of microbial communities are typically generated using comprehensive metagenomic or metatranscriptomic sequence read searches, which are time-consuming, prone to spurious mapping, and often limited to community-level quantification. We developed HUMAnN2, a tiered search strategy that enables fast, accurate, and species-resolved functional profiling of host-associated and environmental communities. HUMAnN2 identifies a community's known species, aligns reads to their pangenomes, performs translated search on unclassified reads, and finally quantifies gene families and pathways. Relative to pure translated search, HUMAnN2 is faster and produces more accurate gene family profiles. We applied HUMAnN2 to study clinal variation in marine metabolism, ecological contribution patterns among human microbiome pathways, variation in species' genomic versus transcriptional contributions, and strain profiling. Further, we introduce 'contributional diversity' to explain patterns of ecological assembly across different microbial community types
Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?
The organization and mining of malaria genomic and post-genomic data is
highly motivated by the necessity to predict and characterize new biological
targets and new drugs. Biological targets are sought in a biological space
designed from the genomic data from Plasmodium falciparum, but using also the
millions of genomic data from other species. Drug candidates are sought in a
chemical space containing the millions of small molecules stored in public and
private chemolibraries. Data management should therefore be as reliable and
versatile as possible. In this context, we examined five aspects of the
organization and mining of malaria genomic and post-genomic data: 1) the
comparison of protein sequences including compositionally atypical malaria
sequences, 2) the high throughput reconstruction of molecular phylogenies, 3)
the representation of biological processes particularly metabolic pathways, 4)
the versatile methods to integrate genomic data, biological representations and
functional profiling obtained from X-omic experiments after drug treatments and
5) the determination and prediction of protein structures and their molecular
docking with drug candidate structures. Progresses toward a grid-enabled
chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa
SEED: efficient clustering of next-generation sequences.
MotivationSimilarity clustering of next-generation sequences (NGS) is an important computational problem to study the population sizes of DNA/RNA molecules and to reduce the redundancies in NGS data. Currently, most sequence clustering algorithms are limited by their speed and scalability, and thus cannot handle data with tens of millions of reads.ResultsHere, we introduce SEED-an efficient algorithm for clustering very large NGS sets. It joins sequences into clusters that can differ by up to three mismatches and three overhanging residues from their virtual center. It is based on a modified spaced seed method, called block spaced seeds. Its clustering component operates on the hash tables by first identifying virtual center sequences and then finding all their neighboring sequences that meet the similarity parameters. SEED can cluster 100 million short read sequences in <4 h with a linear time and memory performance. When using SEED as a preprocessing tool on genome/transcriptome assembly data, it was able to reduce the time and memory requirements of the Velvet/Oasis assembler for the datasets used in this study by 60-85% and 21-41%, respectively. In addition, the assemblies contained longer contigs than non-preprocessed data as indicated by 12-27% larger N50 values. Compared with other clustering tools, SEED showed the best performance in generating clusters of NGS data similar to true cluster results with a 2- to 10-fold better time performance. While most of SEED's utilities fall into the preprocessing area of NGS data, our tests also demonstrate its efficiency as stand-alone tool for discovering clusters of small RNA sequences in NGS data from unsequenced organisms.AvailabilityThe SEED software can be downloaded for free from this site: http://manuals.bioinformatics.ucr.edu/home/[email protected] informationSupplementary data are available at Bioinformatics online
{BiQ} Analyzer {HiMod}: An Interactive Software Tool for High-throughput Locus-specific Analysis of 5-Methylcytosine and its Oxidized Derivatives
Recent data suggest important biological roles for oxidative modifications of methylated cytosines, specifically hydroxymethylation, formylation and carboxylation. Several assays are now available for profiling these DNA modifications genome-wide as well as in targeted, locus-specific settings. Here we present BiQ Analyzer HiMod, a user-friendly software tool for sequence alignment, quality control and initial analysis of locus-specific DNA modification data. The software supports four different assay types, and it leads the user from raw sequence reads to DNA modification statistics and publication-quality plots. BiQ Analyzer HiMod combines well-established graphical user interface of its predecessor tool, BiQ Analyzer HT, with new and extended analysis modes. BiQ Analyzer HiMod also includes updates of the analysis workspace, an intuitive interface, a custom vector graphics engine and support of additional input and output data formats. The tool is freely available as a stand-alone installation package from http://biq-analyzer-himod.bioinf.mpi-inf.mpg.de/
- …
